Radio fhaek o no. 26-3189

- BASIC0OY
Tour Guide

Your Introduction to BASICO09, a
State-Of-The-Art Programmihg Language
from MICROWARE

by

DALE L. PUCKETT

oriem BASIC0Y
Tour Guide

Your Introduction to BASICO09, a
State-Of-The-Art Programming Language
from MICROWARE

by DALE L. PUCKETT

S MICROWARE SYSTEMS”CQ_’RJ’ORATION
1866 N.W. 114th STREET / DES MOINES, IOWA 50322

This Microware Book is available to businesses and organiza-
tions at a special discount when ordered in large quantities. For
information, contact Microware Systems Corporation, General
Publishing Dept., 1866 NW. 114th Street, Des Moines, IA 50322.

0S-9 and BASICQ9 are trademarks of Microware and Motorola
UNIX is a trademark of Bell Laboratories, Inc.

Radio Shack, TRS-80 Color Computer and Tandy are trademarks
of Tandy Corporation.

Second edition. Publication date: November 1, 1985
Copyright " 1984, 1985 by Microware Systems Corporation

All rights reserved. No part of this publication may be repro-
duced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, record-
ing, or otherwise, without the prior written permission of the pub-
lisher. Printed in the United States of America.

ISBN 0-918035-00-7
123456789 10

Book design and illustrations by: George T. Edwards (The Art Board i)
Typesetting by: Type-O-Graphics Two, Inc.

BASIC09 TOUR GUIDE

table of contents

INTRODUCTION
Using This Book vii
Chapter Descriptions viii
How This Book Was Created ix
Acknowledgements iX

PART I—-THE MECHANICS

CHAPTER ONE THE SYSTEM IF YOU CAN'T WAIT

—_ =

Part One
CHAPTER TWO WHERE DO | START? 5
How Languages Work: Compilers and Interpreters 5
Interactivity 6
Special Keys 7
The Repeat Key 8
Other Special Keys 9
Other BASIC09 Magic 9
Up or Down? 10
Summary 10
CHAPTER THREE TOURING MICROWARE’S 0S-9
OPERATING SYSTEM 11
Meet the 0S-9 Shell 12
All About Pathlists and Device Names 13
More Advanced Features 15
Logging On a Timesharing Terminal 16
You Can Feel Secure 17
Chaining 0OS-9 Commands to Basic09 18
Using BASICO09’s Shell Statement 19
0S-9 System Commands 19
CHAPTER FOUR BASIC09’S EDITOR 21
Getting Your Program Into the Computer 21
The Editor 21

it's All In a “SPACE” 23

About Those Line Numbers 24

Renumbering Your Lines 24
Moving Through Your Program 26
Inserting a Line 27
Listing Your Program 28
Deleting a Line 29
in Search of a Lost String 29
Changing Your Mind-Or, Fixing An Errror 30
Summary 32
CHAPTER FIVE HOW TO RUN YOUR PROGRAMS 33
Managing Your Programs-The System Executive 33
The BASIC09 Workspace 33
Getting More Memory 34
Checking and Changing Directories 35
The All Mighty $ 36
Changing Your Directories 37
To “E” or to “EDIT” 38
Saving Your Pride and Joy 38
Loading Your Files 39
Rename Your Procedures 40
Running Your Program 40
Take This Procedure and Pack It 42
Killing a Procedure 43
Summary 44
CHAPTER SIX DEBUGGING YOUR PROGRAMS 45
What If | Make a Mistake: An Ode To Debug 45
Debugging Starts Automatically 45
Forcing BASIC09 To Enter Debug 46
Remember the “‘$” 47
I Quit: Or, How To End a Debugging Session Gracefully 48
Trace On and Trace Off 48
Taking Bigger Steps 49
Setting Breakpoints In Your Program 49
Degrees and Radians 50
Finding the State of Your Program 50
Let Me Change Your Value 51
Printing the Current Value of a Variable 51
Summary 53
PART Il THE LANGUAGE
CHAPTER SEVEN TYPE VARIABLES 55
It Pays To Type Your Data 55
Data Type Definition 55
Byte On 57

Integer Variables are Worth More 59

Real Numbers 61

Strings Hold a Number of Characters 63
Booleans-They’re Either True or False 65
Automatic Type Conversion 67
Arrays Can Hold a Lot of Data 67
Complex Data Types 70
Summary 76

CHAPTER EIGHT EXPRESSING YOURSELF CLEARLY 77

Statements-They Define an Action 77
Assignment Statements 78
Control Statements 79
Functions Perform Many Jobs 79
Operators-They’re All Active Verbs 80
Operator Precedence 82
Expressions-They Have a Value 82
Automatic Type Conversion 83
Summary 84

CHAPTER NINE CONTROL STRUCTURES LET YOU GO

WITH THE FLOW 85
Loop...Endloop-It Could Go On Forever! 88
Exitif-A Way to Escape From a Loop 89
Control of Program Fiow 90
Repeat...Until You Get Tired 92
Let’s Loop For Awhile Next Week! 93
While You’re Still Learning, Let’s Do It Again 94
If You Can Think, Then Make a Decision 96
Gosub Calls a Basic09 Subroutine 98
Goto: Use It Sparingly 101
On Error Goto Lets You Exit Gracefully 102
Summary 103

CHAPTER TEN TALKING TO THE OUTSIDE WORLD 105

Reading and Storing Internal Data 105
All About Paths and Files 107
Inputting Data From Your Terminal 108
Printing Data On Your Terminal or Printer 109
Two Types of Files-Random and Sequential 111
Let’s Create a File 112
Let's Open a File 112
Let’'s Write to Our File 113
Reading Our Records 114
Don’t Forget to Close Your File 115
To Get Rid of a File-Delete it 116

When You Put Data In a File, You Can Get It Faster 117
Summary 121

CHAPTER ELEVEN WHO SAYS FORM FOLLOWS
FUNCTION?
You Can Tab To Any Position
POS Will Tell You Where You Are
Print Using Gives You Complete Control
Summary

CHAPTER TWELVE LETTING BASIC09 RUN IT'S OWN

PROGRAMS
Modularity
The Run Statement: A Programmer’s Marathon
Pass the Word- Use a Parameter
The Hard Way
The Easy Way
The Automatic Way
Recursion
Summary

CHAPTER THIRTEEN USING MACHINE LANGUAGE

ROUTINES
Stacks

Let’s Add It All Up
Summary

CHAPTER FOURTEEN EXAMPLE PROGRAMS
Sample Program One-Finances
Sample Program Two-Blackjack Game

PART lll 0S-9 COMMANDS EXPLAINED
PART IV BASIC09 KEYWORDS EXPLAINED

PART V COLOR COMPUTER GRAPHICS
The Color Computer Display
Screen Coordinates and the Graphics Cursor
Color Codes and Sets
The GFX Module
A Summary of GFX Functions
Entering the Graphics Mode
The Housekeeping Commands
The Drawing Commands
Status Commands
Where’s the Paint Command?

INDEX

NOTES

123
123
124
124
129

131
132
132
133
134
135
136
139
141

143
143
145
147

149
149
162

169

189

275
275
276
277
278
279
280
280
281
283
284

285

291

BASIC 09

the philosophy

I hate BASIC!

Got your attention, didn’t |? Why would anyone that hates BASIC
write a book about something called "BASIC09""?

The answer to that question is simple. BASICO09 is much more
than BASIC. It is a complete programming system that gives you
the friendly interactive feel of BASIC while delivering the modularity,
structure and readability of the PASCAL language. We’ll be show-
ing you the advantages of these characteristics throughout the book.
But for now, let’s get back to that first sentence.

Forget that you love BASIC and hate PASCAL. Or, vice versa.
Just look at the mechanics of the sentence.

It is a simple sentence. It has only one subject, one verb, and
one object. It is inherently clear.

As simplicity is the key to success for the writer, it is also the

key to success for the programmer. | hope it will be the key to the
success of this book.

USING THIS BOOK

The Official BASIC09 Tour Guide has four parts. The first part
teaches you the mechanics, the second introduces you to the language
itself, the third is a complete reference guide that shows each 0OS-9
operating system command, and finally, the fourth lists each BASIC09
keyword in alphabetical order.

Vi

Part One introduces you to the operating system. You'll learn
how to use the keyboard and editor to enter your own programs. Then,
you’ll find out how to run your programs using BASIC09’s system com-
mands and learn to debug them with the debugger.

Part Two teaches you the language itself. You’ll find that writing
good programs in BASICO9 is easy and quite natural.

The two reference guides presented will make life easy after you
learn the basics. You'll find illustration, short procedures and sam-
ple runs to project the concept of OS-9 commands and BASIC09
keywords.

CHAPTER DESCRIPTIONS

Chapter One is for fun. It gives you a chance to run a short pro-
gram before you dive into the book.

Chapter Two gets down to business. You’ll be introduced to
several special keyboard functions as we show you how to talk to your
computer.

Chapter Three gives you a tour of Microware’s OS-9 operating
system. If you’ve never been able to master chewing gum and juggl-
ing tennis balls at the same time — hold on. We’ll reveal the magic
of multi-tasking.

Chapter Four covers BASIC09's editor. You'll be entering your
own programs in no time.

Chapter Five shows you how to run your programs. You’ll also
learn about LOADiIng, LISTing, and KILLing them.

Chapter Six deals with the inevitable. We’ll show you how to
find those pesty parasites that keep sneaking into your programs.

Chapter Seven will make you feel like a motion picture director
after you learn to TYPE variables. You’ll discover the difference
between INTEGER and REAL numbers and be introduced to BYTE,
STRING, and BOOLEAN. Will TRUE ever be FALSE?

Chapter Eight shows you how to express yourself clearly when
writing BASICO09 programs. You'll be introduced to statements, func-
tions, and many operators.

Chapter Nine talks about structure. It will put you in control of
your computer. No longer will your programs be GOing TO visit
strange line numbers.

Chapter 10 shows how your programs talk to the outside world.

You’ll learn about input and output paths and find out how you can
keep permanent files.

Viil

Chapter 11 is for the purist who knows in his heart that form fol-
lows function. You’ll learn everything you ever wanted to know about
PRINT USING.

Chapter 12 shows you how to make BASICO09 procedures RUN
other procedures. You’'ll see why it’s more fun to turn a big job into
a number of small jobs after we introduce you to modularity. Then,
we'll give you a special treat and show how recursion can help you
solve complex programming problems.

Chapter 13 shows you how to make BASICO09 run 6809 machine
language subroutines. You probably won’t need this information
though — almost every function you can dream up is already in
BASICO09.

Chapter 14 gives you some fairly good sized Basic09 programs to
study and to use.

The manuscript of this book was prepared by the author and the
editors using word processing and spelling checker programs run-
ning on a 6809 microcomputer under the OS-9 Level |l operating
system.

The manuscript was transmitted directly from an OS-9 computer
to a Compugraphic typesetting system. This process helped us en-
sure that the accuracy of the contents of this book, especially of the
sample programs.

Several people deserve special credit. Bill Ball and Paul Powers,
fellow Coast Guard photojournalists and neophyte computer program-
mers, read every page of the manuscript to insure that it could be
understood by beginners. Ball also helped compile the excellent en-
cyclopedic listing of BASIC09 keywords in Part 1V.

Thanks go to Tom Westhoff, an instructor at Willmar Area
Vocational-Technical Institute in Minnesota. His advice and editorial
assistance helped make this a better book for beginning programmers.

We all owe a great deal of thanks to Ken Kaplan, Larry Crane,
and Bob Doggett at Microware and Terry Ritter (formerly at Motorola)
for designing this state-of-the-art language.

And, very special thanks go to my wife Esther who put up with
the long hours and creative pressures of this writing project.

IX

HOW THIS BOOK WAS CREATED

ACKNOWLEDGEMENTS

CHAPTER ONE

the system
if you can’t
wait

PART ONE

Welcome! You are beginning a friendly, guided tour of a revolu-
tionary new computer language — Microware’s BASICO09.

This Chapter is dedicated to those of you who yearn for adven-
ture — people like me, who enjoy playing with a new toy as soon as
the package is open.

We'll give you a short procedure to enter and run. After you've
run it a few times and the new has worn off, we’ll meet you in Chapter
Two where our guided tour officially begins. There you’ll meet the OS-9
operating system and several special keys on your terminal.

For now, let’s play!

Follow these steps and you’ll be running the demonstration pro-
cedure in no time at all.

a. Turn on your computer and bring the OS-9 operating system

to life. If you don’t know how, have a friend show you or consult your
0S-9 User’s Manual.

b. When the system is ready, you should see this prompt:
089:

c. Now, type BASICO09 and then hit the key. After
a few seconds, you’re screen should look like this.

0S9: BASICO09
BASIC09
Copyright 1981 Microware and Motorola

Reproduced Under License
B:

d. Now, type: EDIT DEMO and hit the (RETURN) key to put you
into BASIC09’s edit mode: You should see this on the screen:

B: EDIT DEMO
PROCEDURE DEMO

e. The E: is a prompt for BASIC09's editor. It means that BASIC09
is ready for you to enter the demonstration procedure.

f. To enter aline, you must type the as the first character
in the line. After you have hit the spacebar, just type the line as it

is printed here, and then hit the key.

g. There are several things you should be aware of as you type.
First, the (SPACE) will appear as a blank character position on your
screen. The key will also be invisible to you, but BASIC09
will echo it to the screen and cause the star, “*” prompt to be printed
on the next line.

B: EDIT DEMO
PROCEDURE DEMO

E: print
E: input “Please type your name here:”, name

E:
h. Now, go ahead and type the rest of the procedure listed below.

i. After you have typed the entire procedure, answer the editor’s
prompt by typing the letter Q to return to BASIC09’s system mode.
Be sure that you type the Q as the first character in the line. If you
put a space in front of it, BASIC09 will think you are typing a word
that it doesn’t know and you’ll find out about error messages before
we can explain them in this book.

j- As soon as you see the B: prompt again, you may run the
procedure by typing:
B: RUN DEMO

k. Enjoy your first procedure for awhile, and we’ll see you soon
in Chapter Two.

EXAMPLE NO. 1: DEMO

PROCEDURE demo
DIM counteri,counter2:INTEGER
DIM name:STRING[20]

PRINT

INPUT "Please type your name here:’’, name
PRINT "“Hello’’; name;"’.” ""Welcome to BASIC09! "’
PRINT

PRINT “l can help you do many things."”’

PRINT "“For example, | can print the multiplication”’
PRINT “‘table for you. Watch! "

PRINT

FOR counter1:=1 TO 9

FOR counter2:=1 TO 9

PRINT USING ’14> '"; counteri*counter2;

NEXT counter2

PRINT

NEXT counteri

PRINT

PRINT "“"Now that you know | work, please relax’’
PRINT “and turn to Chapter Two. | hope you’ll’”’
PRINT ’‘enjoy your guided tour’’; name; "."”"
PRINT

END

CHAPTER TWO

where do i start?
LW? \

WHERE DO | START? Welcome aboard! Fasten your seatbelt,
grab your terminal and hold on! You’re about to drive the Mercedes
of computer languages — BASIC09.

In this chapter we’ll be showing you the magic of the keyboard
as you learn how to talk to BASICO09 from your terminal. We'll even
throw in a few tricks that will make your life as a programmer easier.

Writing a computer program is similar to writing a novel. The pro-
grammer, like the author, must have full command of the language.
Yet, the language must do its part.

HOW LANGUAGES WORK: COMPILERS AND INTERPRETERS

Computers, and particularly microcomputers, are extremely simple
minded machines. Basically, they work by performing long sequences
of very simple individual steps. The secret of their magic is that they
can do calculations very quickly (on the order of a million steps per -
second). But they don’t have a prayer of even coming close to under- Y mégg\
standing human languages. What they do understand are long lists YO 15...
of commands stored in memory as numerical codes. These codes are
called “‘machine language’’. Unfortunately, raw machine language is
as alien to humans as English is to computers.

Programming languages span this communications gap between
computers and people. Programming languages are themselves
programs that translate special languages to machine language the
computer can deal with. The languages are compromises that are
concise and simple enough for computers to figure out yet powerful
enough for humans to comfortably use to solve complicated problems.

There are two basic ways a programming language can carry out
its translation task. One class of languages, called ‘‘compilers’’, take
a previously prepared program (called the “‘source” program) and
translate the whole works to a corresponding machine language
program (called the “object program’) — all in one shot.

INTERACTIVITY

The other class of languages are called “interpreters”. They let
you type in a program which is stored in memory almost exactly as
you have typed it in i.e., in “source” form. When you tell the inter-
preter to run your program, it gets each program statement, one-by-
one, figures out the corresponding machine language instructions re-
quired, and executes them. The problem is that after it’s figured out
what a statement means, it has no way to remember the interpreta-
tion if the same statement happens to be encountered again later, and
this is very often the case. Because the interpretation process also
consumes a considerable amount of time, the program runs much
slower than the one-shot compiler method. Another disadvantage of
interpreter languages is that for a given program, the source version
needs more memory storage space than the object version.

Despite the relative slowness and voracious memory appetite of
interpreters, they are far and away most widely used on microcomputer
systems because interpreters allow changes to be made quickly and
conveniently. They also usually provide easier ways to test errant pro-
grams. As you will come to appreciate, as you acquire programming
experience, these factors can easily tip the scales from the better effi-
ciency of compiler languages to the ease of use of interpreter
languages.

Let us digress. | remember my early years in journalism well. The
adage that good stories aren’t written, but rather re-written, was alive
and well. It was an age when we struggled without word processors.

When | started a story, I:

a. put a piece of paper in the typewriter,

. typed a lead sentence,

. read the sentence,

. tore the paper from the typewriter, and finally,

. crushed the paper into a little round ball and threw it in the
wastebasket.

[UeN ol o)

| repeated those steps — usually in the same order — until:

a. | was satisfied with the lead sentence,
b. had passed my deadline, or
¢. there were no more trees in the forest.

The steps | went through to write the story above are similar to
the steps you must follow today when using most high level language
compilers.

Before you can run a program, you must:

a. type in your program source code using a text editor,

b. save your code to a disk file,

c. run a compiler that produces an object code file on a floppy
disk, then

d. load the object file into memory and run it.

What a hassle! And just think, if you make a mistake anywhere
along the line, you must start the entire process over again.

6

Enter our hero, BASIC09 — a complete programming system
designed to make your life easy! BASICO09 contains a powerful text
editor,a multi-pass compiler, and a run-time debugging package that
is entered automatically when an error occurs. These tools are in
memory at the same time and can be run instantly by typing a single
key. Program development time is shortened. And what does the
preceding triple mouthful actually mean? Simply this: BASICO09 IS
ACTUALLY A COMPILER-TYPE LANGAUGE CAREFULLY DIS-
GUISED AS AN INTERPRETER SYSTEM. Yes, with BASIC09 you
have the best of both worlds—the efficiency of a compiler with the
convenience and friendliness of an interpreter!

Throughout the rest of the book we’ll be giving you short ex-
amples. Type them in and watch them run. Better yet, experiment
with them. Make small changes and watch your terminal’s screen
to see what happens.

The programs in the first several chapters are included to give
you something to type in and run while you are learning the mechanics.
If you have questions about any BASIC09 keyword, you may look it
up in the encyclopedic listing in Part Four of this book.

BASICO09 is a programming language. It runs in an environment
called OS-9. OS-9 is an “operating system” that lets BASIC09 and
other programming languages talk to the real world. The role of an
operating system is to manage the basic operation of the computer,
much like a traffic cop. For example, it handles all the complicated
input and output for your terminal and disks, etc. If the computer did
not have an operating system, every program would have to include
its own complicated input/output functions. The operating system al-
ways lives in memory along with any other programs being used. The
operating system also eliminates possible mayhem by setting stan-
dards so data files used by different programs and languages are com-
patible with each other.

0OS-9 connects BASICO09 to the keyboard you type on. It writes
letters and numbers on your terminal’s screen so you can read them.
It prints data on your printer so you can have a hardcopy. It saves
programs on floppy disks for you — so you won’t have to type them
over every time you want to run them. It even lets you run two or more
programs at the same time — a process called muliti-tasking.

0OS-9 has its own library of programs that you can call in to do
your dirty work. These programs are called utility programs and we’ll
show you how to use them in Chapter Three. But first, let’'s demon-
strate the magic of your keyboard.

YOU

Utllit
SHELL Progra:u

BASIC

COMPYTER

SPECIAL KEYS

Your keyboard has several special keys which make life easier.
They let you correct mistakes, repeat actions or even stop a program
in midstream.

Let’s start with the ““mistakes’’. What happens if you mean to
type PRINT but PRING comes out of your fickle fingers. No problem
—if you correct it. And if you don’t, BASIC09 will let you know.

7

CONTROL-H

gilld[J

BACK
SPACE

) ggual} o
lCTRI. p{u:' H W

CONTROL-X

Zilld/.’) -
'CTRL)9/,41' X

THE REPEAT KEY

There are two ways to correct an error. You can hit the backspace
key to back the cursor up to the bad character and then type over
it. Or, you can hit the line delete key to get rid of the whole mess
and start over. It’s your choice.

On most terminals the keyboard has a key marked, BACK SPACE
or BKSP. It causes the cursor to back up one character position.

If your terminal does not have this key, you can back the cursor
up one position by striking the H key while holding down the key
marked CTRL. Other terminals have a group of four arrow keys that
let you move the cursor. On these terminals, the arrow that points
to the left can be used.

You say you don’t have a key marked, LINE DELETE. No
problem! Most terminals don’t. On OS-9 systems you may delete
the line you are typing by striking the X while holding down the key
marked CTRL.

Other special functions let you repeat the previous input line,
interrupt a program, redisplay the present input line, exit a program,
and wait. The “‘wait”’ function gives you a way to stop your terminal
from scrolling so you may study a line while listing a long procedure.

You’ll love the repeat function because of the wear and tear it
saves your finger tips. To use it, you hold down the CTRL key while
typing the letter A. You’ll find this function really handy when you
need to run the same procedure many times.

With BASICO09 and OS-9, there’s no need to type a command line

over and over. Just type (CONTROL-A), and the line will magically
reappear. Then, type to run the command again.

Try it the next time you turn on your OS-9 computer. Type: dir
(RETURN). Your computer will promptly list the contents of the current
data directory.

Then, type: (CONTROL-A) (RETURN) . Your trusty OS-9
machine will list the directory again. If you think the repeat key is
neat now, wait till you use it with a long command line.

Here’s another trick you can use after you have typed and saved
a few BASICO9 procedures. Suppose you need to list the procedures
APROCEDURE, BPROCEDURE ... FFROCEDURE. You can use the
repeat key as a short cut. Type:

LIST APROCEDURE (RETURN),
BASIC09 should do what it’s told.
On with the magic. Now, Type:

CONTROL-A).

You'll see LIST APROCEDURE reappear. Now, hit the BACK
SPACE key until the cursor is over the A in APROCEDURE. If your
keyboard will auto-repeat, just hold down this key until you arrive.

After you have done this, type a B followed by another

(CONTROL-A), followed by - You should see BASIC09
LIST BPROCEDURE.

Doesn’t that beat typing. Exercise this special key every time
you get the chance. You'll save hours.

OTHER SPECIAL KEYS

If you ever need to temporarily stop the execution of a procedure
in the middle, you can use the Interrupt Key. On most OS-9 systems,
you strike the letter C while holding down the CTRL key.

You may redisplay the present input line by typing (CONTROL-D)
or, stop a program by typing . The Q stands for

quit.

Imagine that you are running a program that prints a long list of
numbers on your terminal. The numbers are coming at you so fast
that they scroll off the screen before you can read them. What do
you do?

Sounds litze a good time to try OS-9’s special ‘“‘wait’’ key. Strike
the W key while holding down the key marked CTRL. The printing
should stop. After you have studied the numbers, you may continue
printing by hitting any other key. Try it.

The last special key is marked ESC — for ESCAPE — on most
keyboards. It sends an end-of-file character, to BASIC09 and gives
you a way to send an end-of-file signal to procedures that receive data
from the keyboard.

There’s only one catch. When you send this ESCAPE code to

BASICO09, you must be sure that you type as the first
character on the line.

Keep your seatbelt buckled, we haven’t told you everything. Are
you impatient? Do you often know what you want to do next but find
yourself waiting for the computer to finish one task before you can
tell it to do another?

Rest easy. Most BASICO09 systems let you “‘type ahead.” This
term is a fancy way of saying that while the computer is running one
program, you can go ahead and type another command line, or answer
the next question if you know what it will be.

In fact, you may stay several command lines in front of the
computer. [t will execute them one at a time, just as fast as it can.
The only catch is that you will be typing blind, which is only a minor
slow down however and is much better than sitting around chewing
your fingernails.

Keep the faith. In the next chapter, we’ll show you how to tell
the operating system to go do one job and come right back and ask
for another. You’ll even learn how to make it do three or four things
at the same time.

OTHER BASIC09 MAGIC

UP OR DOWN?

Should you type your programs using uppercase letters? Or,
would lowercase letters look better?

BASIC programs look nice and are easy to understand when
BASIC commands and statements are typed with uppercase letters
and variable names are typed with lowercase letters. With many
languages, this scheme is a major hassle. With BASICO09, it's a snap.

Here’s how you do it. When you type a procedure, leave your
keyboard in the lowercase mode and only use the shift key when you
want your procedure to print a capital letter. BASIC09’s editor will do
the rest. When you list the program you’ll be in for a pleasant surprise.

In fact, you’ll find that BASIC09 does more than capitalize
commands. It also automatically indents listings to make procedures
easier to read and help you find certain logical errors.

Here’s an example:
If you type:

for count : = first to last
print count
next count

BASICO09 will put this into memory:

FOR count : = first TO last
PRINT count
NEXT count

And speaking of surprises. You'll really do a double take when
you make your first mistake while typing a BASIC09 program. But,
that’s a story for Chapter Four.

SUMMARY

In this chapter you have learned about several special keys that
will make life easier. You should know how to:

. Backspace the cursor

. Delete a line

Repeat a command line

. Redisplay an input line

. Interrupt a program

Stop the screen from scrolling

. Stop a program

. Send an ESCAPE code

Type ahead of the computer

Type your programs in lowercase letters

oSt a0 o

Can you remember which control keys are used for a. to h. above?
if not, take time out for a review.

It's time to get this buggy headed down the road. Turn on your
0S-9 based computer, turn to the next chapter, and you'll learn about
one of the most powerful operating systems on a microcomputer today.

10

CHAPTER THREE

touring Microware’s 0S-9
operating system

We gave you the first hint of OS-9’s power in the last chapter
when we introduced you to several special keys on your terminal. If
you were impressed then, tighten your seatbeit — “‘you ain’t seen
nothing yet!”

As you may have guessed, much of BASIC09’s power comes from
its environment — Microware’s OS-9 operating system.

In this Chapter we’ll give you a brief overview of OS-9 and show
how BASIC09 procedures can run many operating system utility pro-
grams automatically. Of course, you can also runthem manually when
BASICO9 is in the system mode.

You'll be introduced to:
CHAIN SHELL 0S-9 COMMANDS

In Chapter Two we mentioned that an operating system is nothing
more than a piece of software that lets you communicate — talk if
you please — to many different types of hardware.

It is the operating system that lets your printer or disk file under-
stand what you are saying on the keyboard. It is the operating system
that gives you a way to hook your computer to another computer
through a telephone line and modem.

You'll find that with the OS-9 operating system, the possibilities
are almost endless. You'll be limited only by the hardware you own
and your imagination.

11

MEET THE OS-9 SHELL

When you talk to OS-9 by typing a command on your keyboard,
you are communicating with the SHELL. The SHELL is a command
interpreter that translates the words you type into an action by the
computer. You’'ll know when you’re talking to the SHELL because
you’'ll see its prompt. It looks like this:

0S9:

When you see this prompt, you’ll know that the SHELL is active
and waiting for you to enter a command. To enter a command, you
simply type a command line followed by a carriage return. You can
use lower-case letters, upper-case letters or a combination — the
SHELL doesn’t care.

Now, let’s take a closer look at an OS-9 command line. The first
thing following the prompt should be the name of a program. This
name can be the name of a program located in a module in your com-
puter’s memory or the name of a file that stores your program on a
floppy disk.

The program itself can be 6809 machine code that executes directly,
a module containing compiled intermediate code like that used by
BASICO09, or a procedure file. Here’s what happens when you type
a program name in an OS-9 command line.

If the SHELL finds a module in memory with the name you have
typed it will run the program. If it doesn’t find the program in the
module directory it looks for a disk file with that name in the current
execution directory. If it finds the file, OS-9 loads it into memory and
runs it.

If the name you typed is not the name of a module in memory or
a file stored in the current execution directory, you still have another
chance — it may be a procedure file. The SHELL knows this, and
searches the current data directory for a file with the same name.

If the SHELL finds a file in the data directory, it assumes it is a pro-
cedure file and runs it. A procedure file is a special case. Instead
of holding object code that runs on your computer, or I-code that is
executed by BASICO09, it contains a text file that represents one or
several command lines.

These command lines look just like the command lines you type
on the keyboard. When the SHELL executes a procedure file, it reads
the file one line at a time — as if it were reading data from the keyboard
— and executes each command.

The program the SHELL reads from your keyboard or a pro-
cedure file is usually followed by one or more parameters. A parameter
gives directions to the program that is being executed. It is separated
from the program name by a space or spaces. For example, if you
want to list a file called “‘secret’’ to your terminal you must type:

0S9:list secret

If you want it to be listed on your printer you type:

12

0S9:list secret >/p

In fact, you may even send the listing to another file:

0S9:list secret >copyofsecret
As we promised, OS-9 is a very versatile operating system.
Sometimes the parameters are options or modifiers. For example
when you want to list the current data directory to your terminal, you
type:
0S9:dir
This command line lists the names of all files in the current data

directory to your terminal. But stand by, there's a way to get more
information about the files. Try:

0S9:dir e

This command line lists all available statistics about each file in the
current working directory. The “e”’ is an option that means list the
“entire”’ directory record. Speaking of directories and options. If you
want to see which files are stored in your current execution directory,

try this:
0S89:dir x

Or, if you want to see all the information about the files you have
stored in the current execution directory, use this command line:

0S9:dir x e

ALL ABOUT PATHLISTS AND DEVICE NAMES

When you used the LIST command above, you were using a
flename as a parameter. In this case, the parameter was an ab-
breviated pathlist. Since you didn’t pass any information about a
device or directory, LIST assumed that the file was located in your
current data directory. But, what happens when you want to access
a file that is not located in your current data directory?

Don’t give up. Entering complete pathlists is easy. A pathlist is
a description of the complete route your data must take before it ar-
rives at its destination. It may contain the name of a mass storage
file, a directory file, or any Input/Output Device.

The authors of OS-9 chose the term “pathlist” instead of “‘filename”
because in many cases you will be giving the SHELL a list that con-
tains more than one name. For example, many “‘pathlists’” contain
a device name, and one or more directory names as well as the name
of a data file. Each name in the pathlist is separated by a slash ““/”’.

Here are the rules. Pathlists contain names that describe three
things.

1. Names of Physical 1/0 devices
2. Names of Directories
3. Names of regular files

13

/d1

/p

These names may contain as many as 29 characters or as few
as one character. They must begin with either an upper-case or a
lower-case letter. After that they may be made up of any combina-
tion of the following legal characters.

1. All uppercase letters: (A-2Z)
2. All lowercase letters: (a-z)
3. The ten decimal digits: (0-9)

4. The underscore: (_)

5. The period: (.)

Here are some legal names:
the.BOOK
Chapter.one__and.two
XYZ123

Are you wondering how OS-9 can tell the difference between a
filename and a device name? Here’s the secret.

A device name always starts with a slash, /. If the device holds
multiple files — a disk drive for example — another slash followed
by a directory or a filename usually follows the device name. If,
however, the device cannot handle multiple files — as is the case with
a terminal or printer — nothing follows the device name.

Here are the standard Microware device names:
NAME DEVICE

TERM Primary system terminal
T1,T2 Additional terminals

P Parallel printer

P1 Serial printer

DO Floppy Disk drive zero
D1 Floppy Disk drive one
HO Hard Disk zero, etc.

Remember that if you want to name these devices in a pathlist,
you must type a slash before their name. Here are some common
pathiists.

Group 1: ITERM T Ip Ip1
Group 2: /DO /d0O/cmds /d1/worktext/the.book

The pathlists in Group 1 refer to devices that cannot handle multi-
ple files.

The pathlists in Group 2 are more complex. The pathlist /d0 refers
to disk drive number zero. If you needed to know the names of the
files stored on this drive, you would use this command line:

0S9:dir /d0

After you hit the [RETURN] key, the names of all files that you
have previously saved on the disk installed in drive ‘‘d0”’ will be listed
on your terminal. Let’s try another command line:

0S89:dir /d0/cmds

14

This command lists the names of all files stored in a directory
named CMDS located on the disk installed in drive /d0.

Let’s take it one more step:

089:list /d1/worktext/the.book

This command prints a listing of a file named the.book. The
file is located in a directory named ‘“‘worktext’” on the disk you have
installed in device Id1.

To find out the details about installing and using directories please
refer to your OS-9 Operating System Users Manual.
MORE ADVANCED FEATURES

0S-9 has many advanced features and we’ll introduce you to a
few in passing. For complete understanding, a thorough study of the
0S-9 Users Manual is needed. Advanced features include:

1. I/O redirection
2. Memory Allocation
3. Multitasking

During normal operation all input for your program comes from
0S-9’s standard input path. Likewise, all output either goes to the stan-
dard output path or the standard error output path.

Reports, listings, and other data generated by your programs are
usually sent to the standard output path. Error messages and various
prompts are routinely sent to the standard error output path. All three
paths normally lead to your terminal.

When you redirect the input you are telling OS-9 to get its input
somewhere else. Likewise, when you redirect the output you are tell-
ing OS-9 to send its data somewhere other than your terminal. For
example, when you sent the directory listing to the printer earlier in
this chapter, you were redirecting the output to the printer.

There are three redirection operators that you will see in SHELL
command lines:

< means redirect the standard input path
> means redirect the standard output path
> > means redirect the standard error output path

There are many ways to use these operators. You may redirect
the input to your program from another terminal on the system or from
a modem. Or, you may send output to a disk file for later printing.
There is no end to the possibilities. You may even type on your line
printer with this OS-9 command line.

0S9:echo /term >I/p

Some OS-9 programs need very little memory to run. Others re-
quire thousands of bytes. This is not a problem, however, because the
header of each program module tells OS-9 the minimum amount of
memory needed to run a program. However, when you need more
memory, it is an easy matter to request more with OS-9’s memory size
modifier. There are two ways to request more memory.

15

MEMORY UNITS

1 byte

LOGGING ON A TIMESHARING TERMINAL

1 page

256
bytes

1K =
4 pages

1024
bytes

0S9:copy #8 myfile yourfile
0S9:copy #2K hisfile herfile

The first command line above instructs OS-9’s copy utility to use
eight 256-byte pages of memory — a total of 2048 bytes. And believe
it or not, the second example also gives the copy command 2048 bytes
to use. It is requesting two “‘K’’ or two thousand bytes of memory.
For a detailed explanation of why 1K is actually 1024 bytes and 2K
is actually 2048 bytes, see Chapter Seven.

There are also several ways to run a series of OS-9 programs.
You can run them sequentially — one after the other; you can run
them concurrently — all at the same time; or, you can synchronize
them so that the output of one feeds the input of another using OS-9’s
pipes.

There are two ways to run programs sequentially. You may type
one command line followed by a carriage return, wait for the program
to finish and then type the next command line — or, you may type
more than one command on a line. You must use a semi-colon to
separate the commands if you chose the second method. Here’s an
example:

0S9: copy hisfile herfile ; dir >/p

This command line will copy the file named hisfile from the cur-
rent data directory to a file named herfile in the same directory. It
will then immediately print a listing of the current data directory on
your printer.

If you want to run more than one program at the same time you
must ask OS-9 to execute the programs concurrently by using an
ampersand, &.

You may run any number of programs at the same time. The main
restriction is usually the amount of memory in your system.

Pretend that you have just finished a book. You need to print
a listing for your editor, but at the same time you need to be working
on a term paper for a professor at the college course you’re attend-
ing at night. To do both jobs at the same time, try this!

0S9:list mybook > /p&
&004

0S9:edit stinking__assignment

It’s magic. Soon after you type the first line, your printer will start.
Yet, the familiar OS-9 prompt will pop on the screen almost immediate-
ly. As soon as it appears you can type the command line that starts
your editor. The printer will run as long as it needs to print the book
without bothering you at all — if you can stand the noise.

With OS-9 you can do more than just print one file while you are
editing another. In fact, one of the major uses for concurrent execu-

16

tion is terminal timesharing. For example, you could use your editor
to write a news release about a new product on one terminal while
your secretary is running the company payroll on another. Here’s what
it will look like.

ON YOUR TERMINAL:

0S9:tsmon /t1&
&005
0S9:

ON THE TIMESHARING TERMINAL

0S-9 Level 2 Version 1.0 Timesharing System 2/14/83 15:30:35

User name?: esther
Password:
Process #5 logged 2/14/83 15:31:47

Shell
0S9:

Isn’t it amazing. Your terminal has prompted you to go back to
work. While you're writing that news release, your secretary can prob-
ably finish the payroll and balance the books. Your computer will pay
for itself in no time.

Usually, your timesharing terminal will be started automatically
by a procedure file that runs when you turn on your computer. We
showed you how to start it manually so you would know how it works.

When you first run the timesharing monitor program, TSMON,
nothing happens. The terminal remains idle until someone hits its
return key.

Also, when using a terminal on a timesharing system other than
the master terminal, you must log on to the system. To log on you
enter your name and the proper password. You will need to get your
password from the system manager before you attempt to log on the
first time. If you don’t know this magic word, you won’t be allowed
on the system.

You have three chances to enter a valid user name and password.
If you fail the test three times, the system will terminate the log-in se-
quence. If you are trying to use a system through a telephone and
modem, you will most likely be disconnected. To log off an OS-9 system
from a timesharing terminal, you need only hit the ESCAPE key
representing an end-of-file signal on most systems and it returns your
terminal to an idle state.

YOU CAN FEEL SECURE

If you work on a timesharing OS-9 system you needn’t worry about
someone else writing in your data files. The system protects you with
its file security system.

17

Each OS-9 directory and file has several attributes that tell the
system who owns the file and who may use it. They are:

Write permission for owner.
Read permission for owner.
Execute permission for owner.
Write permission for public.
Read permission for public.
Execute permission for public.
. A “‘sharable’ attribute.

A directory attribute.

DNOO A ON

Let’s explain the special cases first. If the ““‘sharable’ attribute
is turned on, OS-9 will not let two users use a file at the same time.

The directory attribute tells OS-9 that a file is a directory file. A
directory file is special because it cannot be changed by the user.
To change a directory or delete it during an operation would create
total havoc with the file system. In fact, there would no longer be a
system.

The other file security attributes almost explain themselves. They
work because OS-9’s file system automatically stores the user number
associated with a process when it writes a file. If you are the owner
of a process, you will own any files it creates.

if you CREATE a file with none of the public attributes set, you
will be the only person that can READ, WRITE, or EXECUTE that file.
You may even ask the system to protect a file from you. For example,
after getting a mailing list in final form, you may clear both the public
and owner WRITE permission attributes to prevent accidental deletion
or modification.

CHAINING 0S-9 COMMANDS TO BASIC09

There may be times when you want to exit BASIC09 and run an
0S-9 utility command. The CHAIN statement lets you do it.

You’ll most likely use CHAIN when you run a process that needs
a large amount of memory. CHAIN frees a lot of memory because
when it exits, it unlinks BASIC09 and returns all its memory to OS-9.

This means that if you want to return to BASIC09 after running
an OS-9 utility you must use a sequential command line that executes
BASICOQ9 as its last task. Here are a few examples:

CHAIN "“ex BASIC09 menu”’
CHAIN ""DIR /DO/BASIC__Programs”’’
CHAIN 'Dir;Echo*** Copying Directory***; ex BASIC09 copydir”’

The first example exits BASIC09 and immediately executes it
again. Then, BASIC09 immediately loads a procedure named
“menu’’ from the current data directory and runs it.

The second example exits BASIC09 and lists the directory
/DO/BASIC__Programs to your terminal. After doing this, it returns
control to the SHELL and you will see the familiar OS-9 prompt.

18

The final example, exits BASIC09, echos a message to your
terminal, and then executes BASIC09 again. When it starts up the
second time, BASIC09 automatically loads and runs a procedure
named copydir.

Any files you have opened remain open when you run the CHAIN
command. However, if you need to pass an open path to another
program, you must use the ex option because of the way the SHELL
handles data paths.

USING BASIC09’S SHELL STATEMENT

If you are running a small OS-9 program that doesn’t need a lot
of memory, you may use BASIC09’s SHELL statement. It does not
exit BASIC09, unlink and return memory. Rather, it puts BASIC09
to sleep temporarily. YOUR

PROGRAM

The SHELL statement lets you — or your BASIC09 procedures
— access almost every OS-9 command. When you RUN it, the SHELL
statement suspends BASIC09, and executes the OS-9 SHELL, passing
the string expression you supply as a parameter. BASICO09

If you need to exit BASICO9 temporarily to run a series of OS-9
commands, you may use the special ‘“‘null string’”’ case by passing an
empty string in your command line.

When you pass this empty string, you will be greeted by OS-9’s SHELL
prompt immediately. You may then send as many commands as
needed. When done, you need only hit the ESCAPE key to signal an
end-of-file condition and terminate the SHELL. When the SHELL
terminates, BASIC09 wakes up and you’ll be back where you started. UTILITY
Let’s look at a few examples. COMMAND

SHELL ‘'‘copy file1 file2” - "
SHELL "‘copy file1 file2&" The “Shell” Game
SHELL “edit Great_ American__Novel "’

The first statement calls the OS-9 copy utility and copies the
contents of file1 into file2. File1 is assumed to be in the current
data directory. File2 will be created in the same directory.

A 4

The second example does the same job except it executes
concurrently. This means that when the copy process is started,
control returns to BASICO09. If the SHELL statement is in a procedure,
the next line in that procedure will be executed immediately.

The last statement puts BASICO09 to sleep, calls the OS-9 SHELL
and runs the system editor. It opens a file called Great__American__
Novel in the current data directory.

0S-9 SYSTEM COMMANDS

You will find a complete description of each OS-9 utility command
in Part Four of this book. After you start programming, you’ll be able
to use them directly from BASIC09 with the CHAIN and SHELL
statements described above. We'’ll show you several sample
command lines and where possible a sample run. You’ll find the
commands listed in alphabetical order for your convenience.

19

SUMMARY

In this chapter you have been introduced to one of the most
powerful operating systems running on a microcomputer today,
Microware’s OS-9. You have also learned how to run operating system
utility commands directly from BASIC09.

In the next Chapter we’ll be getting down to business. You’ll bring
BASICO9 to life and learn how to enter and edit your own procedures.
Make a quick pit stop now and we’ll meet you in Chapter Four.

20

CHAPTER FOUR

BASIC09’s editor

/48 " R\

o8 e

Did you remember to bring your learner’s permit? | hope so, it
sure would be a shame to get a traffic ticket while driving the Mercedes
of computer languages.

You can’t take a trip around the world without taking that first
step out the door. Likewise with programming. You’ve arrived at a
milestone — it’s now or never. Be sure to keep your seatbelt fastened
until you pass the bumps!

enter here >

GETTING YOUR PROGRAM INTO THE COMPUTER

You could read about programming forever and enjoy it. But,
it's more fun to program. Let’s get started.

Before you can run even a simple program you must get it into
your computer’s memory. In this chapter we’ll show you how to do
that using BASIC09’s editor. Then, as we move on to Chapter Five
you’ll have something to LOAD, LIST, KILL, and RUN. What was
that saying your teacher drilled into your head back in the first grade?
First things first?

Hold on tight! We should make 120 mph in this chapter as you
learn about the following one and two keystroke commands.

roor L
(SPACE) 3 s* d d*
c c* q

Don’t panic. This business really does make sense. In fact, I'll
bet you can see a pattern or two developing already.

Let’s start at the beginning. First, bring BASICO09 alive by typing:

21

THE EDITOR

0S9: BASIC09

In a few seconds you should see this message on your screen.

0S9: BASICO09

Copyright 1981 Microware and Motorola
Reproduced Under License

Basic09

B:

The B: means that BASICO09 is in its system mode and is waiting
for you to tell it what to do. You'll be seeing this prompt a lot while
you learn to program. Now, try typing:

B: edit

Remember, the B: is already on the screen. You only need to

type edit and strike the key marked on your terminal’s
keyboard.

Shortly after you hit (RETURN), your screen should look like this:

B: edit
PROCEDURE Program

After you typed edit, BASIC09 checked to see if you had typed
a name for your procedure. Since you didn’t, it named your procedure,
Program.

Now type a q and you’ll find yourself back in BASIC09’s system
mode. We're going to enter the editor again now. But this time we'll
let you name your procedure. Don't let the word “‘procedure’ scare
you. On many BASIC systems a BASICO9 procedure would be called
a “‘program.” Here goes.

E:q
Ready

B:e screenfull
PROCEDURE screenfull

E:
Notice anything different? This time we didn’t type edit. We were

lazy and only typed the single letter, e. It worked though, didn’t it?
Stick with us. We’ll show you a lot of short cuts.

We wanted to name our procedure screenfull, so we typed that
name after the e. Again, the symbol means that you must
hit the key marked, on your keyboard. When you strike
the key you won’t see anything appear on the screen, but
the cursor will move to the left hand side of the screen and drop down
to the next line.

22

Make sure you type the space between the e and your procedure
name. |f you don’t, BASICO09 will get indignant and ask, WHAT?

On with the show. You’'re about to be introduced to the most
important editor command.

After our next example you’ll understand what NASA has been
selling all these years. As you enter your first program, hit the
spacebar on your keyboard every time you see the symbol, [SPACE].
Go ahead, give it a try.

PROCEDURE screenfull

E: (SPACE) 100 print “BASIC09 is GREAT!!!";
E:GPACE) 110 goto 100

E:q
Ready
B:

Congratulations! You've just typed your first program into a
computer. You've also learned two new editing commands.

Here’s what happened. Every time you typed a as the
first character on a line, BASIC09 remembered what you typed. That’s
why we told you the was the most important editing
command. Without it, you would wind up typing to yourself.

Did you notice that when you typed the letter q to quit and return
to BASIC09’s system mode, you typed it as the first character in the
line. If you had typed a in front of q, the editor wouldn’t
have quit. It would have typed an error message. We’ll show you
one later.

There are two more details we can show you in this exercise. After
you typed each program line you had to hit the key to tell
the editor that you were finished with the line. We printed the
symbol so that you would know exactly what to do. We’'ll
drop it in later examples.

Did you notice that each time you hit the key, the editor
printed a star, *, before it printed the prompt for the next line. That
star shows you where the *‘edit pointer’’ is. What's an edit pointer?

Let’s explain.

The edit pointer is how the editor keeps track of where the next
command will work. It’s like using your finger to keep your place when
you read a book. Just as you might move your finger back and forth
to re-read a paragraph, the edit pointer can also be moved back and
forth.

23

2
L)

IT’S ALL IN A

The Edit Pointer

FORN =1T0 10
PRINT N

NEXT N

END

ABOUT THOSE LINE NUMBERS

RENUMBERING YOUR LINES

After you hit the key, the editor entered your line into
its memory and moved its edit pointer to the next available space in
memory. It then printed a star and echoed the empty line. All you
saw was the star. If the edit pointer had been moved to the first
character of an existing line, BASIC09 would have printed the star,
*, followed by the characters in that line.

Without this innocent looking star you wouldn’t know your location
in the program. Later on, when we show you how to insert a line in
your programs, you’ll realize the star’s importance. For now,
remember that a star in front of a line means that the editor is pointing
to the first character in that line.

We used line numbers in this first editing example to show you
how they work and to give you a chance to get line numbers out of
your system. Line numbers are a holdover from the days of dumb
programming languages—modern languages such as Basic09,
Pascal, C and others have little need for them, and for good reasons.

Here’s some advice: if you don’t have to use line numbers, don’t.
Your programs will be shorter. They will run faster. They will be easier
to edit. And they’ll be easier to read. Isn’t that what programming
is all about?

Here are a few facts you can use if you ever need to edit an
existing program that uses line numbers. If you must enter a new
line, type the line number followed by the program statement. The
editor will automatically insert your line at the right place in the program
because numbered lines are automatically stored in the computer’s
memory in ascending order.

When you need to move to a numbered line, you need only type
the line number followed by a (RETURN). The editor will move to
that line and print it. If the line number you requested does not exist,
the editor will print the next higher numbered line. If you must delete
a numbered line, simply move to it and then type the letter “d’’ in
response to the prompt.

Here’s another secret. You don’t need to type the key
before the line number when entering a program that uses line
numbers.

We used the command in our example to show you how
it works. You’ll need it while entering most of our example programs,
however. For the most part, the examples will not use line numbers.

When you get stuck using an old program with line numbers,
BASIC09 makes life easy. It even lets you renumber program lines.
To renumber the lines in a program, you’ll use a command statement
like this.

E:r 1000,10
E:r* 1000,5

24

Notice that we had you type the r — an editor command — in
the first position of the line. We did not tell you to use a
command because commands must always be typed immediately after
the prompt. Again, do not type a in front of a BASIC09 editor
command. It will not work.

Did you remember to hit the key after you typed the
line? No? How long did you wait before it dawned on you that

something else was needed?

Let’s explain the two commands on the previous page. The first
starts at the current line and makes it line 1000. Each line number
afteritis increased by 10, i.e., your program will be numbered 1000,
1010, 1020, 1030, etc.

When you run the r command you’ll notice that all line numbers
in front of the star (above the star on the screen) at the time you type
the command, will not be renumbered. In fact, aimost all of BASIC09’s
editing commands work from the star, *, toward the end of the
program.

The second command, r*, starts with the very first line number
in your program and makes it line 1000. The star you typed after
the “r’’ makes this happen. Each additional line number is then
increased by five. After you type this command line your program
will be numbered 1000, 1005, 1010, 1015, etc.

Here's another short cut. You may also renumber your program
by simply typing one of these command lines:

Exr
Eir* (RETURN)

Notice that we typed the command lines without the beginning
line number and increment. The editor will automatically use 100 as
the first line number and increase each additional line number by 10.
The 100 and the 10 are called “‘default”’ values. Essentially, typing
the commands above will give you the same result as typing:

E:r 100,10
E:r* 100,10

There’s one more thing you should know, and then we’ll try to
forget about line numbers forever. You don’t need to worry about line
numbers inside the program. For example, if you start with the
following short program:

E:100 PRINT “"Hello!”’
E:110 GOTO 100

And renumber it with this command:
E:r* 1000,5

Your program will look like this:

1000 PRINT "Hello!”’
1005 GOTO 1000

25

Line number 100 in the example above has been changed to
1000 by the renumber command. It was also changed inside line
number 1005. Remember, BASIC09's renumber command
automatically changes all numbers inside a line that refer to a
renumbered line.

MOVING THROUGH YOUR PROGRAM

There are five basic commands which you can use to move back
and forth within your program. First, you’ll need a program with a
few more lines. Go ahead and type the program below.

Don’t forget to type the (SPACE) as the first character following
the prompt in each line. Also, do not type the numbers along the left
edge of the listing. BASIC09 prints them automatically when it lists
a procedure and we’ll explain them in the next chapter.

Finally, don’t worry about indenting while you type, because
BASIC09 does indents for you automatically.

EXAMPLE NO. 2 KBAUD 7A

PROCEDURE kbaud7a
0000 DIM reply,bell:STRING[1]
0010 DIM answer,counter,loopcounter:INTEGER
001F DIM memory(5):INTEGER
002B
002C PRINT CHR$($0C)
0032 bell=CHRS$(7)
003A INPUT "“Ready?”, reply
0049 PRINT “'Start!”’ +bell
0058 counter=0
005F WHILE counter<1000 DO
006C counter = counter + 1
0077 answer =counter/2*3 + 4-5
008B GOSUB 280
008F FOR loopcounter=1 TO 5
009F memory(loopcounter) = answer
00AB NEXT loopcounter
00B6 ENDWHILE
00BA PRINT bell + 'stop!”’
00C7 END
00C9 280 RETURN

Now that we have a program listing to use, let’s go to work. First,
answer the editor’s prompt with:

EiL®

Congratulations! You’ve just been introduced to BASIC09’s list
command. We used an uppercase letter L in our example so you
wouldn’t confuse it with the number one. However, feel free to use
a lowercase letter I when you program. BASICOQ9 recognizes it also.

26

See the indentation. It sure makes a listing look nice.

Notice the star that BASIC09 has been printed in front of the first
line of the program. Good, let's move it.

Any of these commands will move the star from one line to
another:

E : (RETURN)
E:+
E :— (RETURN)
If you're lazy, you’ll use the first example. One keystroke and

you’ll be on the next line. But, what do you do if you need to move
more than one line at a time? You have several options. Try these:

E :+ (NUMBER) (RETURN)
E:— (NUMBER) (RETURN)

For example, if you need to move the edit pointer (star) down two
lines you would:

a. hit the key marked, +
b. hit the 2 key, and
c. hit the key marked [RETURN]

After you hit (RETURN), BASICO09 will echo a star and the new
line. To move backwards, you type the — key instead of the +.

Of course, you can_move any number of lines at a time by
changing the value of (NUMBER). For example, to move the star
10 lines you would type the number 10 in step “‘b.”” above. Go ahead
and try it. It’s a lot easier to do than it is to explain.

How would you like to be able to move the edit pointer all the
way to the bottom of your program so that you can add a new line.

Type:
E:+ * (RETURN)
What do you do when you need to move to the top of the program
so that you may insert a comment? It’s simple, just type:

E:- * ETURN)

Take some time now to move the star around in the sample
program. Remember, BASIC09’s edit pointer is always located in front
of the line printed behind the star. Once you master the star, you'’ll
find the rest of this chapter a snap. Let’s move on.

So you forgot to type a line. No problem, it’s about time you joined
the club. Review the section above. Gotit? Ok, go ahead and move
the star in front of the line that follows the line you forgot. Now use
the (SPACE)command to insert the line you left out before. That
was easy, wasn't it?

27

INSERTING A LINE

Let's look at an example. Suppose you want BASICO09 to print
the message:

Hello
Space
Cadets

But you typed the program like this:

PRINT "“Hello”
PRINT "“Cadets”’

Forgot something, didn’t you? Never fret. Type:
B

BASIC09 should move the star to the top of your program and
your screen should look like this:

* print “Hello”
E:

This means that BASIC09’s edit pointer is located in front of the
first line of the program. You need to insert a line in front of the second
line.

Looking at it from the editor’s point of view, you want to insert
a line in front of the line:

PRINT "“Cadets”
Let's giveitatry. Hit the key. BASICO09 should echo:

* PRINT "Cadets’’
E:

Great! You have the star just where you want it. Do your thing.
Type:
E:(SPACE) print "Space”
If you remember that BASIC09’s editor always inserts lines in front
of the line the star is pointing to, you should have it made.

You now have a program in memory which will print the message
you wanted. But to prove it, you're going to have to learn another
new editing command.

LISTING YOUR PROGRAM

It’s time to get brave. Type:
E:L”
BASICO09 should list:

PROCEDURE Program
0000 PRINT Hello"”’

0009 PRINT ““Space”’
0012 PRINT ‘"Cadets”’

E:
28

Congratulations. You now know how to list your procedures while
editing.

Let’s try something different. Move the star to the top of the
procedure using the “-*”” command. Then type:

E:L 2
I'll bet BASIC09 echoed something like this:

PRINT “‘Hello”’

PRINT ’‘Space”’

E:

Just as you can move any number of lines, you can list any
number of lines. And don’t forget, the L* lets you list an entire
procedure. There’s something magic about a star.

Keep the faith. We're almost done. Besides, once you know how
to edit programs you'll be able to play to your heart’s content. Just
for the fun of it, let’s get rid of the word “Space’’ in the message above.
Move the star in front of the line:

PRINT "‘Space’’
Do you remember how to do it?

Now, type a d in the first position after the edit prompt. Don’t
be afraid. After you type the d, go ahead and list your program. Your
screen should look something like this.

* print "Space”’’
E:d (RETURN)

* print "Cadets”’
E:L* (RETURN)
print “Hello”’

* print “Cadets”’
E:

Just for practice, why don’t you see if you can figure out how to
put the line back in. Give it a try.

When your procedures get longer, things will get a littie tougher.
it sure would be nice to be able to go directly to a BASICO09 statement
or variable without looking through a long listing.

No problem! Once again BASIC0O9 comes to the rescue. It’s time
to learn how to use the Search command. The PROCEDURE
kbaud7a which you typed in earlier will give you a few lines to work
with.

Ready? Let’s find the WHILE ... DO loop in the program. It's
easy. Move the cursor to the top of the file. Then, type:

E:s .WHILE.

29

DELETING A LINE

IN SEARCH OF A LOST STRING

BASIC09 should respond by printing:

* WHILE k<1000 DO
E:

The periods, ., you typed on both sides of the word WHILE are
delimiters. You may use any character as a delimiter — except a
(SPACE) — if it is not present in the word you are looking for. The
common punctuation marks work best. | use a period for a delimiter
because it is easy for me to hit it on the keyboard. Many people use
a slash, I. You should use the delimiter that works best for you.

If we had typed:
E:s aWHILEa

The search would have been successful. Personally, | think I'll
stick to common punctuation marks.

When you use the s command without a star, the editor will start
searching for the target string at the current position of the edit pointer.
If it finds the string in a line, it will move the edit pointer (star) to the
line and display it. If it can not find the string you are looking for, it
will leave the edit pointer where it was and let you know. In the ex-
ample above, it would print:

CAN’T FIND: "WHILE"

How would you like to find every occurence of a string in your
procedure? It's a snap. Type:

s* .WHILE.
If you type the line right, BASIC09 should print:

WHILE k<1000 DO
ENDWHILE
E:

Notice that the star is positioned at the beginning of the last line
in the procedure that contains the characters, WHILE.

How about that. Looks like it’s time for another word about the
star. Here’s the secret. The star tells the search command to look
for every occurence of the character string enclosed between the
periods. It also tells the editor to print every line it finds that contains
the target string. It leaves the edit pointer (star) in front of the last
line containing the string.

And, aren’t you lucky today? Here’s a shortcut you can use with
the search command. You don’t need to type the second delimiter.
Our search above would have worked if we had simply typed:

s .WHILE

CHANGING YOUR MIND — OR, FIXING AN ERROR

It's bound to happen. Sooner or later you are going to hit the
wrong key while typing a procedure. It happens to me all the time.

30

When it happens to you, don’t panic. We’re going to show you
BASIC09’s ‘““Change’”’ command next.

Look at the listing of the procedure kbaud7a again. What do you
think would happen if you typed PRING instead of PRINT in the fifth
line? Try typing it that way and we’ll take a look. Your screen should
look something like this.

E: pring chr$($0C)
1
pring chr$($0C)
T

ERROR #027

— Missing Assignment Statement
* 002C ERR pring chr$(0C)

E:

Whenever you make a mistake, BASICO9 will always report an
ERROR. If you have the OS-9 utility PRINTERR activated, you will
also receive an English language error report similar to the one above.

Notice that pring was not capitalized. If you had typed print,
it would have been listed in all capital letters. The little arrow under
the ¢ in chr$($0C) was put there by the editor to help you find the
error. Nice, isn’t it?

Here’s what happened in our example. The editor didn’t
recognize pring as one of BASIC09's reserved words, so it assumed
that it was a variable that you wanted to use.

Still thinking that pring was a variable, the editor assumed that
you wanted to assign the value of the expression, chr$($0C) to it.
But alas, it couldn’t find an equals sign, =.

At this point the only thing the editor could do was print the error
message to let you know about your mistake. Of course, in all your
infinite wisdom you immediately recognized that you meant to type,
print. But how do you fix it?

The change command is easy to use and very similar to the search
command above. To fix the mistake above you need only type:

E:c.pring.print.
The editor should immediately reply with:

* PRINT CHR$($0C)
E:

The ¢ without the star looks for the first occurrence of your string
— pring in this case. If it finds the string, it substitutes a replace-
ment string. This time the replacement string was print.

Here's another secret. You really wouldn’t have needed the
period after the word print. The delimiter following the replacement
string is optional. Deja Vu!

If you type the change command with a star, ¢*, it really goes
to work for you. In fact, every occurrence of your match string in the

31

SUMMARY

procedure is changed to your replacement string. This is extremely
handy when you must change the name of a variable that you have
used many times throughout a procedure.

It's time now for a word of caution. Be careful with the change
command — especially if you are using the star. If your match string
is short it could easily appear in a longer word.

Consider what would happen if you instinctively asked the editor
to change no to yes. But, you forgot that one of your messages con-
tained the word, normal.

That’s right! After you ran the change command, normal became
yesrmal — and that isn't.

You should have a pretty good handle on the editor by now. But,
why stop. Go ahead and practice a few minutes. You’ll probably
amaze yourself. When you're finished, take a short break. You’ll need
the rest. We're predicting a fast track for our race through the
BASIC09 system mode in the next chapter.

You should be in the drivers seat with BASIC09’s editor. See
you on the track.

In this Chapter, you have learned:

How to insert a line with the (SPACE) command.
How to enter a program with line numbers.

How to renumber a program.

How to move through your procedure.

. How to list your pride and joy.

How to search for a string.

. How to fix a mistake with the change command.

@~oooop

32

CHAPTER FIVE

how to run your programs

You say you bought your computer to solve problems. But, when
you brought it home you had a bigger one. No one told you that you
had to write programs and run them to solve problems. Is that what’'s
getting you down? Hang in there.

In Chapter Four, we showed you how to enter a program into your
computer’s memory. Now, we’re going to show you how to run it.
You'll also learn how to LOAD, LIST, SAVE, PACK, and KILL it.

We’ll show you how to request more memory, change your exe-
cution and data directories, rename your procedures, and find out
what's in your workspace. As an extra added attraction, we’ll run an
0S-9 system utility.

Here’s a list of the BASIC09 commands you'’ll learn in this chapter:

$ BYE CHD CHX

DIR EDIT KILL LIST
LOAD MEM PACK RENAME
RUN SAVE

Remember the phrase, ‘“You can’t see the forest for the trees.”
Let’s see if we can put things in perspective.

0S-9 is an operating system that gives your computer the ability
to talk to the real world. It lives in your computer’s memory. You
learned a few of its tricks in Chapter Two and were introduced to its
power in Chapter Three.

33

MANAGING YOUR PROGRAMS — THE SYSTEM EXECUTIVE

THE BASIC09 WORKSPACE

GETTING MORE MEMORY

THE COMPUTERS
MEMORY

Basic09
Workspace

| Procedure A
|

L Procedure B

J Procedure C

Basic09
Program

0S-9
Program

BASICO09 is an interactive programming language. OS-9 loads
it into memory when you ask for it from your terminal. When OS-9
brings BASICO09 to life it gives it a memory allowance, called a
workspace.

I’ll bet teenagers can identify with this concept; always wanting
more ‘‘space’’ and more allowance? Do they always want them in
that order?

Let me show you how to quit when you get tired. Then, we’ll park
our Mercedes in the middle of the workspace and see what we can
learn.

No, you can’t just throw up your arms and quit. If you are going
to be a successful programmer, you must learn to exit gracefully.

Besides, quitting is as simple as a three-letter word. Just answer
BASIC09’s system prompt with the three letters, bye, and control will
return to the program that called BASIC09. Most of the time you’ll
see 0S-9’s prompt. On your terminal, it should look like this:

Bibye
0S9:

If you would rather only hit one key to exit BASICO09, just type
the key —sometimes it's marked — immediately
after the system mode prompt, B:. You should see the familiar 0S-9
prompt, 0S9:.

You didn’t really want to quit already, did you? OK then, let’s
continue.

When you load BASIC09 from OS-9, you automatically receive
a 4K workspace. The “4K’ is computer talk which means about 4000
bytes of memory.

‘What’s a byte,” you say? Try to picture a tiny mail box inside
your computer. It's small and will only hold one character. Got the
picture? You've just visualized a byte.

If you want to get really technical, the paragraph above isn’t quite
true. You actually receive 4096 bytes of memory in your workspace
when you load BASICO09. It just happens that 4000 is the closest
decimal number, rounded to the nearest 1000, of two raised to the
12th power.

Don’t get illusions of grandeur too soon. BASIC09 uses 1280
bytes out of the 4096 to store its own data. This leaves you with 2816
bytes for your procedures and the variable storage you need to run
them.

If you don’t have enough memory in the workspace to hold both
your program and its variables, BASIC09 will refuse to run your
program. Talk about independent computers! Don’t worry. There’s
almost always an easy answer in BASICO09.

34

There are two ways to get more memory. If you think ahead, you
can ask for it when you call BASIC09. To get more memory you use
an 0S-9 command line like this.

0S9:BASIC09 #20K

This command gives you a workspace approximately 20,000 bytes
long. The actual count is 19,200 (20,480 less BASIC09’s reserved
1,280) if you’'re a stickler for details. And if you want to be a program-
mer, you had better be.

If you're like most of us, you’ll forget to ask for enough memory.
What then? Again, no problem. Just use BASIC09’'s MEM command.

There are two ways to use MEM:

B:MEM
B:MEM 8000

When you use the first example, you are asking BASIC09 a ques-
tion. ‘How much memory do | have in my workspace?”’ Your con-
versation should look like this:

B:mem
4096
Ready
B:

If you type a decimal number after MEM like we did in the second
example, you are sending BASIC09 a message. You are saying, ‘‘Hey
BASICO09! | need more space! Give me 8000 bytes.”

CHECKING AND CHANGING DIRECTORIES

Let your fingers do the walking. Sound familiar? | haven’t seen
ayellow keyboard yet but I’d be hard pressed to find a better analogy.
When you need to know someone’s phone number, you look it up
in the telephone directory — unless you’re lazy and call information.
Asking BASICO09 to see what is in the workspace is easier than calling
information.

The DIR system command will show you the name of all pro-
cedures in your workspace. It reports their size and tells you how
much memory they need for data storage. DIR also tells you how
much memory remains available in your workspace and marks all
PACKed procedures with a dash, -.

DIR may be called to action in many ways. Here are a few:

B: (RETURN)

B:dir

B:dir >/p

B:dir >mydirlist

The first and second examples print a directory listing on your
terminal. If your workspace is empty and you haven’t asked for extra

35

THE ALL MIGHTY §

memory, your exchange should look something like this.

B:dir

Name Proc-Size Data Size

2816 free

Ready

B:

Now, let’s look at the third command line. The greater than sign,

>, is being used to redirect the output of the DIR command from the
standard output to the printer.

DIR’s output can be redirected to any valid OS-9 output device.
For example, it could be sent to a disk file just as easily. In fact, that's
what happens when you type the fourth command line. In this last
example, the list of procedures in your workspace is written to a file
called “‘mydirlist’.

If you load the PROCEDURE kbaud7a, which you used to
practice editing, and then run DIR you should see:

B:dir

Name Proc-Size Data-Size
* kbaud7a 281 42
2535 free

Ready

B:

You get quite a bit of information from DIR. Do you understand
what it all means? Let’s take a closer look.

The report above shows that your procedure is named kbaud7a.
The 281 means that it is 281 bytes long. The 42 tells you that it needs
42 bytes of memory to store its data. The report also lets you know
that you have 2535 bytes of memory left in the workspace. This
memory may be used to store additional procedures or data. We’'ll
talk about that sneaky star again soon.

If DIR gives you the report above, what do you think would happen
if you typed, $dir. Go ahead and try it. Your disk drives came to
life, didn’t they?

Here’s what happened. You temporarily left BASIC09 and called
the OS-9 SHELL because you typed the dollar sign, $.

Since you followed the dollar sign with the name of one of 0S-9’s
system utility commands, DIR, the SHELL read the name and
executed the command for you. When it finished, it returned you to
BASICO09’s system mode. Confused about DIRs? Don’t worry, it can
be confusing. The Basic09 DIR is completely different than the OS-9
DIR command. There are some other cases where command names
in Basic09 are the same as OS-9 command names, so be careful
because they do entirely different things!

36

The dollar sign command we’re using here is very important. It
is your door to OS-9 from inside BASICO09. It lets you run any OS-9
utility. Or, any machine language program that runs under OS-9 for
that matter.

You can even create concurrent processes with the dollar sign
command. This is a fancy way of saying that you can make your
computer do more than one thing at a time.

For example, you can use the dollar sign command to tell OS-9
to print your annual report while you are making some last minute
changes in a BASICO09 program. Of course, you must have enough
memory in your computer to hold both programs. Doing two or more
things at once is called multitasking. Remember?

CHANGING YOUR DIRECTORIES

What'’s that old saying? ‘The grass is always greener on the other
side of the fence.”” It's sometime true with directories too. Let’s
explain.

First, you must understand that OS-9 uses a tree-structured, or

“hierarchical”’ directory system. Each disk can have more than one Disk */d0”’
directory, and a directory can include the names of other directories.
| |

It lets you put related files together.

You can store your business records in files in a directory called [cmos BUSINESS | | BUDGET
BUSINESS. You can put your household records in a directory called | P'RECTORY | | DIRECTORY | | DIRECTORY
BUDGET. You won’t need to look through a long directory listing of
household budget programs while you’re trying to find a file contain-

ing information about last year’s sales. . Budget
0S-9 always uses at least two directories. The first is called the riee Fles Files

‘“execution directory’’ which has the name CMDS for ‘‘commands’’.

It holds command files that can be run by your computer. You will

find OS-9 utility commands in the execution directory. This directory

also holds PACKed BASIC09 modules. We'll tell you more about

these later in this chapter.

The data directory is used to hold all kinds of data. BASIC09
procedures are a good example. When you SAVE a procedure from
BASICO9, it is automatically filed in the current Data directory. If you
are working on a timesharing system, your data directory usually has
the same name as your user name. On single-user systems, it is
usually the main directory of an entire disk drive such as /D1.

There are two directory change commands — CHD and CHX.
CHD is used to change the current Data directory. CHX is used to
change execution directories. Here are two examples.

B:chd /d1/budget
B:chx /dO/basicx

The first command changes the current data directory to a
directory file named BUDGET located on device /d1. The second
changes the current execution directory to a directory on device /d0
named BASICX.

37

TO “E” OR TO “EDIT”

We are not being redundant lightly. We wanted this chapter to
be complete and we didn’t want you to forget that any time you are
operating in BASIC09’s system mode you may create or edit a
procedure by typing either a single E or the word EDIT followed by
the name of the procedure. Let’s try it again.

B:edit futures

When you type the command above, BASIC09 will go into its edit
mode and create a procedure named FUTURES. When you are
finished with the editing session, you may type SAVE and your
procedure will be stored automatically in a file named FUTURES in
your current data directory.

SAVING YOUR PRIDE AND JOY

If you forget everything else in this chapter, remember the SAVE
command. It will save a lot of wear and tear on your typing fingers. As
you must have guessed by now, SAVE lets you write a copy of pro-
cedures to a file or device. Let’s look at a few command lines.

B:save

B:save myprogram

B:save aprog bprog cprog

B:save aprog bprog cprog >programs
B:save*

B:save* bunchafiles

Stand by to see more about stars. That infamous asterisk is back
again.

If you type the first command line above, BASICO09 saves the cur-
rent working procedure. This is the last procedure named by a
previous command. For example, if you have just finished editing
a procedure named, MYPROGRAM, then that procedure is the cur-
rent working procedure. The same procedure would be saved if you
had just finished LISTing MYPROGRAM or LOADing MYPRO-
GRAM.

Don’t forget, if you type in a procedure and fail to give it a name
when you call the editor, BASIC09 will give it the name, PROGRAM.

What happens if you can’t remember which procedure you worked

on last? No problem. Type DIR — or just and

look for the procedure marked with a star. Try it.

If you type the second command line above, BASIC09 will look
for a procedure named MYPROGRAM in your workspace and SAVE
it in the current data directory. It will be filed with the same name,
MYPROGRAM. If BASICO09 is unable to find the procedure you will
SOON see an error message on your screen.

The third example SAVEs the procedures, APROG, BPROG,
and CPROG in a file named APROG in the current data directory. The
fourth example SAVEs the same procedures as the third. However,
it SAVEs them in a file named, PROGRAMS in the current data
directory.

38

The next to last command line SAVEs every procedure in your
workspace. The file is stored in the current data directory and will
have the same name as the first procedure in the workspace. The
last example SAVEs every procedure in the workspace also, but it
stores it in a file named BUNCHAFILES.

Here’s a short procedure that you can type in and SAVE for prac-
tice. It's also a useful program that you can use to figure out how
to invest the money you make writing powerful applications programs
in BASICO09.

EXAMPLE NO. 3: FUTURVAL

PROCEDURE futurval

0000 DIM value,principal,interest:REAL
000F DIM timescompounded,years:INTEGER
001A

001B PRINT ‘‘Let’s figure the future value of an investment!”’

004F

0050 REM First we need to ask a few questions.

0078

0079 INPUT “"What is your initial investment? "’,principal

00A2 INPUT ""OK, What is the nominal interest rate? ", interest
00D1 INPUT “"How many times will interest be compounded?’’,timescompounded

0105 INPUT “"How many years?,years
011D
011E interest=interest/timescompounded/100

012F value =principal*(1 + interest)’(timescompounded*years)

0148

0149 PRINT “Your future value is’’; INT(value*100 +.5)/100
0177 PRINT

0179

017A END

It’s interesting to note that when you SAVE a program you are
merely LISTing it to a disk file. Yet, there is a difference in the files
produced by the SAVE and LIST commands. SAVE writes a straight
file to your disk. There is no indentation or other pretty printing.

Remember, BASIC09 formats your LISTings so that loops and
other control structures are indented to enhance readability. You
should also be aware that if you tell BASIC09 to LOAD a file of pro-
cedures that have been LISTed to a disk file, you will get nothing but
errors. Go ahead and try it if you feel brave.

The bottom line! If you plan on LOADIng a file later. You must
SAVE it now.

Here’'s an easy command for you. LOAD does just what its name
implies. For example:

B:load myprogram
B:load /d1/programs/myprogram

39

LOADING YOUR FILES

The first command LOADs the file MYPROGRAM from the cur-
rent data directory into your workspace. The second LOADs the file
MYPROGRAM from a directory named PROGRAMS on device /d1.

Files may include one procedure. Or, they may include many
procedures. What you SAVE is what you LOAD.

RENAME YOUR PROCEDURES

Here’s another easy one. Tired of the name you gave a procedure
when you first edited it. Don’t fret. RENAME it. Here’s the format:

B:rename xyz abc [RETURN]

If you run the command above, BASIC09 will look in your
workspace for a procedure named XYZ. If it finds it, it will name it,
ABC. If the procedure is not in the workspace, you'll find yourself
reading an error message on your terminal.

Make sure you know the difference between RENAME and
SRENAME. RENAME is a BASIC09 system command that will
rename a procedure in your BASIC09 workspace. $SRENAME, on
the other hand, will cause your computer to execute the OS-9
RENAME utility. It is used to rename disk files.

Remember the dollar sign. You may never get rich, but you'll
know how to use all the powerful OS-9 utility commands.

L3 CH

RUNNING YOUR PROGRAM

Paydirt! You have arrived. This is why you bought your com-
puter. And, it’s almost as simple as a three-letter word.

Before you try the RUN command, type in the following procedure
using BASIC09’s EDITor. Leave the procedure FUTURVAL in your
workspace.

40

0000
002D
003F
0040
0047
0056
0061
0062
0070
007E
007F
0083
00B3
00B4
00C4
00C9
00CE
00CF
00DC
O0ES8
00F4
O00F8
O00F9
010A
0120
0130
0132
0133
013E
0142
0144

EXAMPLE NO. 4: ROMAN

PROCEDURE roman i
(* prints integer parameter as roman numeral Decimal
(* data must be >0

PARAM number:INTEGER
DIM value,svalu,position:INTEGER 68
DIM char,subs:STRING

char: = "MDCLXVI"”
subs: =

HERE’S A QUIZ

Roman?

6809

10

"CCXXu

PRINT \ PRINT R —
DATA 1000,100,500,100,100,10,50,10,10,1,5,1,1,0 199

FOR position=1TO 7

READ value
READ svalu

WHILE number > =value DO
PRINT MID$(char,position,1);
number: = number-value

ENDWHILE

IF number > =value-svalu THEN
PRINT MID$(subs,position,1); MID$(char,position,1);
number: = number-value + svalu

ENDIF

NEXT position
PRINT \ PRINT
END

Now’s the time to get into a good habit. As soon as you have
finished typing your new procedure into the workspace, use the SAVE
command to write it to a disk file. Typing it over again wouldn’t be
that much fun!

You should now have two procedures in your workspace. One
should be named FUTURVAL, the other ROMAN. Let’s run them.

B:run (RETURN)
B:run futurval (RETURN)

B:run roman(1983)

Go ahead and try the first command line. What happened? I'll
bet it reported an error. Can you guess why?

When you typed run, BASICO09 tried to RUN the procedure
ROMAN because when you do not specify a procedure name,
BASIC09 automatically runs the procedure with the star. In this case
it was ROMAN since you just finished editing and saving that

procedure.

41

Despite all of your good intentions, you didn’t give BASICO9 ali
the information it needed to run the procedure. You left out a
parameter. Don’t worry about the big word. We’ll cover it thoroughly
in Chapter 12 when we show you how to let your procedures run other
procedures.

Now try the second command line. BASICO09 should run the pro-
cedure FUTURVAL successfully. Did you have fun dreaming about
the money you’re going to make? How about a loan?

Now type the first command line again. BASIC09 should have
run FUTURVAL again. |t did because FUTURVAL is now the pro-
cedure with the star. Got the idea? Good! Let’s move on.

Type the third command line. I'll bet you were shocked when
BASICOQ9 printed 1983 in Roman numerals that fast. You haven’t seen
anything yet. Wait till you see it run your own program.

Time out for a technical note. If BASIC09 can’t find a procedure
you request in your workspace, it won’t quit. It will automatically look
outside the workspace for a module of the same name. If it finds one,
and it is a packed procedure, it will run it.

That's not all. If BASIC09 doesn’t find a module, it still won’t quit.
it will look in the current execution directory and try to find a file with
the same name. If it finds the file, it will automatically load it and
attempt to execute it.

Go ahead and practice with the three examples of the run
command above until you are sick of Roman numerals and tired of
investing. Then, we’ll continue our tour. Leave the two procedures
in your workspace when you are through. We’'ll need them in the next
section.

TAKE THIS PROCEDURE AND PACK IT!

Suppose you have just written the hottest computer program
going. You want to sell it, but you don’t want to give away your secrets.
What do you do? With BASICO9 you can PACK it.

The PACK command tells BASIC09’s compiler to make an extra
pass on your procedure. When it’s finished, there will be a whole new
ball game. Variable names will disappear. Line numbers will be gone.
REMarks will be removed. Your program will be smalier, faster and
won’t take up any room in your workspace.

After you PACK a procedure, no one will be able to list your
program. That’s just what you wanted, isn’t it?

But there’s a catch. After you PACK a procedure, you won’t be
able to LIST it either. No problem. Just make sure you SAVE it with
the SAVE command before you PACK it.

42

When you forget, you will learn an important lesson the hard way
— you must always SAVE a procedure before you PACK it. PACKed
procedures can not be listed.

Here's a sequence of commands that will allow you to SAVE,
PACK, and RUN the procedure FUTURVAL.

B:save futurval
B:pack futurval
B:kill futurval

B:run futurval

.
B:kill futurval

The first command will SAVE the procedure. The second will
PACK it and save it in a file in the current execution directory. The
third will remove it from the workspace. The fourth will load the file
from the current execution directory outside the BASIC09 workspace
and RUN it. The last command line will remove the procedure from
memory outside your workspace.

You do not need to KILL a procedure outside the workspace
immediately if you plan to use it again. However, if you are not going
to use a procedure again, you should KILL it, because it takes up
precious memory in the system.

We should note here that the format or syntax of the PACK
command is just like that of the LIST and SAVE commands. In fact,
it would be a good idea to review the paragraphs which cover the SAVE
command now. You'll soon remember how to apply the ‘‘star’” and
redirect your files.

The next command is deadly. It destroys procedures and
removes them from your workspace. Again, make sure you SAVE
any procedures you think you’ll need later — before you KILL them.
Here’s the format.

B:kill myprogram
B:kill*

The first example KILLs only the procedure MYPROGRAM. The
second KILLs every procedure in your workspace. Use it with caution.

43

KILLING A PROCEDURE

SUMMARY

You've been busy and deserve arest. I'll bet you can even speed
shift this Mercedes by now. Why don’t you reward yourself with a
quick break. Then, join us in Chapter Six where we’ll show you how
to find the pesty parasites that keep trying to sneak into your programs.

In this chapter you have learned about:

. Exiting BASIC09

. Asking for more memory
Looking at directories
. Changing directories

. Saving procedures
Loading procedures

. Listing procedures

. Renaming procedures
Running procedures
Packing procedures
Killing procedures

XU TQ 0000

44

CHAPTER SIX

debugging your programs

ol s

WHAT IF | MAKE A MISTAKE: AN ODE TO DEBUG
There comes a time in life when you realize that you aren’t perfect.

To some, this realization comes early. To others, it comes late
and is a shock. Butif you’re learning programming, it will most likely
come as soon as you type, RUN.

In Chapter Five we showed you how to LOAD, RUN, LIST, SAVE,
PACK, and KILL your programs. Since we didn’t want to discourage
you, we didn’t mention debugging. May those carefree days rest in
peace. Let’s move on.

In this chapter we’ll show you how to set BREAKpoints and
change from DEGrees to RADians. We'll also LET you set the value
of a variable, check the STATE of your program, STEP through a
procedure one line at a time, and turn the TRACE mode on or off.

Here’s a list of BASIC09’s Debug Commands:

$ DEBUG LET Q STEP
BREAK DIR LIST RAD TROFF
CONT END PRINT STATE TRON

DEBUGGING STARTS AUTOMATICALLY

I’ll bet you’ve been worrying since Chapter Five when we didn’t
list DEBUG as an available command in the system mode. Now you
can relax — BASICO09 was designed to make your life easy. After all,
there’s no need to debug a program that runs. Remember dad’s
advice — ““If it works don’t fix it.”

45

So what happens when you do make a mistake — despite all your
tender loving care — while coding? Rest easy, BASIC09 won’t even
say, “l told you so.” Rather, it will enter the Debug mode automatically.
That’s why we didn’t tell you about it in Chapter Five.

Once BASICO09 has activated its debugger, you’ll have a number
of powerful commands at your fingertips to help you trap the pesty
parasites that try to hide in your code.

FORCING BASIC09 TO ENTER DEBUG

There will be times when your program refuses to cooperate. It
will RUN fine — going through all the motions. It won’t even crash
and enter the Debug mode. Yet, it will refuse to compute the correct
answer. What then?

No problem, that’s when you force it to enter the Debug mode
so you can look for the problem. You can do this in two ways.

The quick and dirty way is to type a CONTROL C on the keyboard.
Remember, to do this you must hold down the key marked CTRL while
you strike the €. When you hit this key, you generate a keyboard
interrupt that causes BASICO09 to stop execution and enter the Debug

= mode. You'll know you’ve entered the debugger because you’ll see
) a new prompt, D:.

When you stop a program by typing Control C on your keyboard,
you should see a message like this:

S5 £ S xS BREAK PROCEDURE Program
o \r- 48 4 L D:

The other way to enter the Debug mode is to insert a PAUSE
statement in your procedure using BASICO09’s editor. Your procedure
will run normally until the PAUSE statement is reached. Then, when
it arrives at the line containing the PAUSE, it will halt and automatically
enter the debugger to let you stop at a known line and check the value
of suspected variables, etc.

Oh, | aimost forgot. If you're afraid that you may not be able to
remember why your program entered the debugger, you can have
the PAUSE statement print a reminder for you. For example:

PAUSE "'STOPPING SO YOU CAN CHECK THIS LOOP"”

You can keep BASICO09 from entering the Debugger automatically
when you know there is going to be an error. A good example is when
you reach the end of a file while reading data from a disk.

Use an ON ERROR GOTO statement in your procedure when
you know there will be an error generated to let BASIC09 handle the
error without exiting your procedure. This practice is called ‘‘error
trapping’’ and will be covered in greater detail in Chapter Nine.

46

Remember the trick you played while you were learning about
system mode — the time you escaped OS-9 and had the system print
a report while you were putting the finishing touches on a BASIC09
program? You typed a dollar sign followed by a valid OS-9 command
line.

B:$List secret

This line loaded OS-9’s LIST utility command into memory and
then blatantly printed the contents of your secret file on the screen
while the whole office was watching. That's the bad news.

The good news is that you can do the same thing from the Debug
mode. You can even escape from Debug to play a quick game of
Trek when you get tired of chasing bugs. Only the prompt line will
be different. It should look like this.

D:$trek

Here’s some more good news. Two commands, DIR and LIST,
work like they did when you learned them in Chapter Five. You can
only LIST the current procedure, however. If you need a refresher
you can read about these commands in Chapter Five.

Back to work! Load a procedure into your workspace and we'll
let you experiment. Try this one.

EXAMPLE NO. 5: INTEGERSUM

PROCEDURE integersum
0000 total=0
0008 FOR counter=1 TO 1000
001B total = total + counter
0027 NEXT counter

0032 PRINT ""The sum of the first 1000 integers is’’; total

0060 END

Have you ever wondered about the sum of the first 1000 integers?
Wouldn’t you like to know that total so you can spit it out like an
IBM-370 at the next office party? Hold on to your terminal, type RUN
and we’ll find out together.

That’s a big number, isn’tit. Let’s have some more fun. Using
Debug, we’ll watch BASIC09 compute the answer.

To get started, enter the Edit mode and insert the word PAUSE
as the first line of the program. Then, exit to the system mode and
type RUN. What do you see? You should see a message like this:

BREAK PROCEDURE integersum
D:

If you want to see that number again, type:

D:CONT (RETURN)

47

REMEMBER THE “‘$”’

As soon as you hit the return key the procedure will CONTinue
like nothing ever happened. What would you do with 500500 widgets?

| QUIT: OR, HOW TO END A DEBUGGING SESSION GRACEFULLY

Before we get in too deep, we better show you how to exit a
Debugging session gracefully. Besides, its as simple as a three let-
ter word. Or, a one letter word if you're really exhausted.

When you are ready to give up or have solved the problem, answer
the D: prompt with one of these command lines:

D:END
D:Q

These commands will stop the execution of all procedures in your
workspace. They will close any input/output paths that are open and
return you to the system mode. You’ll know you’re home free when
you see the familiar B: prompt.

TRACE ON AND TRACE OFF

Moving right along, we’ll turn BASIC09’s trace mode on and let
you watch the program execute step by step. Your conversation with
the debugger should look like this:

B:RUN
BREAK: PROCEDURE integersum

D:TRON

D:STEP

BREAK: PROCEDURE integersum
D:

*0002 k=0

=.0

D:

*000A FORnNn=1TO 1000
=1.

=1000.

D:(RETURN)

*001D k=k+n

=1.

D: RETURN)

*0029 NEXT N

=2.

D: (RETURN)

*001D k=k+n

=3.

D:

When you typed TRON, BASICO9 turned the trace mode on within
the PROCEDURE integersum. You're telling the system, ‘“‘Hey! |
want you to tell me what’s going on.”

TRON then goes to work. First, it decompiles a line of your code
so that it can display the source statement you used when you wrote
the procedure. After it prints this line of source code on your terminal,

48

it executes the statement. If an expression is evaluated in the state-
ment, the result of that evaluation is printed on the next line. You
will see an equal sign followed by the result.

TRON prints one line for each expression that is evaluated. If
you are tracing your program in the STEP mode, as we are above,
the debugger will print the D: prompt after evaluating and executing
each line.

Study the sequence above, or better yet, RUN it yourself. You’ll
soon understand what makes the program tick. You’ll also soon grow
tired of following a loop like the one in the PROCEDURE integer-
sum. After all, that FOR/NEXT loop executes 1000 times every time
you run the procedure.

That’s right. We have an answer to your boredom. Take bigger
STEPs. The secret lies in the syntax of the STEP statement.

When you simply type, STEP — like you did in the
example above — you are asking the debugger to single-step through
your code. You could have gotten the same result by typing, STEP

1 .
“But if | can type STEP 1,” you ask, “‘what’s stopping me from
typing STEP 100?”

Absolutely nothing. In fact if you type STEP 100, the debugger
will execute 100 source statements before stopping. Of course if you
have turned the trace mode on with a TRON statement, it will also
print the results of any evaluation in each line it executes. If there are
enough trees in the forest to make the paper, you can print a trace
of every instruction in your program. If you have enough time to look
through the listing you can find out where your code went astray.

There’s a better way. Use the editor to enter TRON and TROFF
statements at different places in your procedure. Then you can print
an evaluation, enter a loop and run around in circles a few hundred
times and exit to print another evaluation. If your program never exits
from the loop, or it comes out displaying the wrong answers, you’ve
probably found your problem.

In case you hadn’t guessed, TROFF is the opposite of TRON.
It turns the debugger’s trace mode off.

Here’s an interesting sidelight you should know about. If you turn
the trace mode on in one procedure and that procedure calls another,
the trace will be off while BASICO9 is executing the called procedure.
In other words, TRON is local to a procedure. If you need to know
what is happening in the called procedure you can easily add a TRON
statement there.

Quite often you’ll want to set breakpoints in your program so that
you can examine variables. You can do this while in the Debug mode

49

TAKING BIGGER STEPS

SETTING BREAKPOINTS IN YOUR PROGRAM

by typing a simple command. For exampie:

D:BREAK integersum

This command will cause execution of your program to stop when
the PROCEDURE integersum is entered. When it stops you will see
the “‘D:”” prompt and will be free to use all the BASIC09 debugging
commands.

DEGREES AND RADIANS

For example, if you are working with a mathematical procedure
that is manipulating angles, you may want to change the way
BASIC09’s math routines view them. The SIN, COS, TAN, ACS,
ASN, and ATN functions can deal with both degrees and radians.
But, they must know which game they are in before they start.

1R,,.,. If the computer assumes you are giving it degrees and you are
'09 actually sending radians, you are in real trouble. While there are 360
degrees in a circle, there are only 6.28 radians. One radian is equal
to 57.295 degrees.

BASIC09’s authors didn’t want you to have this problem
so they gave you the DEG and RAD statements. These statements
may be used in a procedure. Or, they may be typed interactively
while operating in the Debug mode. The syntax is simple:

D:DEG
D:RAD

The first command line sets a state flag in the system that tells
the math routines to evaluate degrees. The latter sets a flag that says,
“Hey I'm a radian’’.

>

Just in case you’re curious and would like to see what a radian
looks like, do this. Draw a circle and measure its radius. Then, mark
off this length along the circle. Finally, draw an imaginary piece of
pie by connecting these marks to the center of the circle. The angle
you have just formed is a radian. Amazing!

FINDING THE STATE OF YOUR PROGRAM

After you’ve chased a bug in your code for a while, you’ll probably
lose yourself in a state of chaos. Consequently, you may need help
because you can’t see the forest for the trees. Rejoice, once again,
BASIC09 can save the day. Type:

D:STATE

BASIC09 will respond with a status report. It should look
something like this:

PROCEDURE DELTA
CALLED BY BETA
CALLED BY ALPHA
CALLED BY PROGRAM

50

This report tells you which part of the forest you are lost in.
Seriously, it gives you a lot of information.

For example, it tells you that the program has stopped while ex-
ecuting a procedure named DELTA. This tells you, where you are.
The procedure DELTA was called by a procedure named BETA. Now,
you know how you got there. BETA, by the way, was called by ALPHA,
which was called by your PROGRAM. By following each one of these
limbs you should be able to find the problem.

LET ME CHANGE YOUR VALUE
Somehow that doesn’t sound nice. Oh well, on with the lesson.

Did you ever play the ““What If”’ game? What If 100,000 copies
of this book are sold? | would probably faint but it sure is nice to dream.
Or, what if we only sell five copies? Oh, well, Mom and Dad are sure
to like it.

What'’s this leading to? Well, if you have a variable named copies
in a procedure and you suspect something is rotten in the PRO-
CEDURE bookstore you can use the debugger’s LET statement to
run some tests. These lines may help you get to the bottom of the plot:

D:LET copies : = 5000
D:LET copies := 1000
D:LET copies : = copies*2

In the first example, you are assigning the value 5000 to the
variable copies interactively. After you have done this, you can type
CONT to find the answer to your *‘What If"" question.

The second debug command line sets the value of copies to 1000.
Notice that while the = syntax is legal, the := form is preferred
because it clearly distinguishes an assignment operation from a com-
parison or test for equality.

The third command merely sets the value of copies to the value
it had when the procedure was suspended multiplied by two.

There’s only one hitch. When you use the LET statement in the
debug mode, you must make sure that you use the same variable
names that you used when you wrote the original source code. If you
don’t, you’ll receive an error message and manage to get yourself
more upset. Incidentally when working within the debugger, you can’t
use the LET statement to assign a new value to a user-defined data
structure.

PRINTING THE CURRENT VALUE OF A VARIABLE

One of the quickest ways to spot a problem in your procedures
is to take a quick look at the value of your variables at suspected
problem points in your code. To do this, you use the PRINT statement.
Again, the syntax is simple:

D:PRINT copies

51

The rules for using the PRINT statement are the same as those
for the LET statement. You must use the same variable names ir
the PRINT command line that you used in your original source code.
And, you can’t PRINT a user-defined data structure. Nor, can you
make up new variable names and expect to PRINT a value.

Here are two more simple procedures that you can use to exercise
the debug mode. Have fun!

EXAMPLE NO. 6: PRINBI

PROCEDURE prinbi
0000 REM by T.F. Ritter
0012 REM prints the integer parameter value in binary
0041 PARAM number:INTEGER
0048 DIM position:INTEGER
004F
0050 FOR position=15 TO 0 STEP -1
0066 IF number<0 THEN
0072 PRINT 1'%
0078 ELSE PRINT 0"}
0081 ENDIF
0083 number: = number + number
008F NEXT position
009A PRINT
009C
009D END

Isn’t it a pain to convert numbers from decimal to binary? Not
any longer. Just RUN this procedure. The syntax is:

B:RUN PRINBI (32)

EXAMPLE NO. 7: DICESIM

PROCEDURE dicesim
0000 DIM dice,points:INTEGER
000B
000C FOR dice=1TO 20
001C points:=INT(6*RND(1) + 1)
002F PRINT "Dice Number:'; dice; "= ''; points
004E NEXT dice
0059 END

This procedure will show you how poor your chances are at
Atlantic City or Las Vegas. You're time is better spent learning to
program your computer with BASIC09.

52

We hope your programs never overdose on bugs. But if they try,
the tricks you've learned in this chapter should help keep your
Mercedes on the road and the “'pit stops’’ short.

You've learned how to force BASICO09 to enter the debug mode
by putting a PAUSE statement in your procedures or typing a
to generate a keyboard interrupt while your program

is running.

You've discovered how to turn on the debugger’s trace mode with
TRON and turn it of with TROFF.

You've learned how to examine the value of a variable with the
PRINT statement and change it with a LET command.

And finally, you can now CONTinue program execution after
making a change or STEP through your procedures a line or more
at a time.

You should know how to operate BASICO9 pretty well by now.
It's time to concentrate on unleashing the tremendous power of this
programming language. We’'ll start by looking at its amazing data
typing capability in Chapter Seven as we begin Part Il of The Grand
Tour.

53

SUMMARY

54

CHAPTER SEVEN

TYPE variables

Welcome to The Official BASIC09 Tour Guide, Part Il — where
the fun begins. The previous chapters showed you how to use
BASIC09. Now, we're ready to deal with the programming process.

There are many types of people in the world. Look closely, you'll
see: tall people and short people; fat people and skinny people; young
people and old people, etc.

Likewise there are many types of data that can be fed into a com-
puter. BASICO09, for example, can ingest the data types BYTE,
INTEGER, REAL, BOOLEAN and STRING the minute you bring it
to life. We’ll explain each of them in this chapter.

Experience tells you that you can’t put 10 pounds of potatoes
in a five pound bag. Likewise, you can’t put a REAL number or a
STRING of characters into a part of memory designed to hold an
INTEGER number. They just won'’t fit.

The wise homemaker saves space in the kitchen by using the
proper cabinet for each utensil. In the same manner, the smart
programmer saves memory space when he uses the proper data type
while assigning storage space for variables.

We’'ll introduce you to each of BASIC09’s built-in data types in

this chapter. Then, we’ll show you how to combine them to define
your own data types.

55

IT PAYS TO TYPE YOUR DATA

DATA TYPE DEFINITION

But first, if you really want to understand programming, you must
take a brief moment to look at the machine. On the surface this miracle
of modern electronics appears to be solving long, complex problems
in a single breath. Actually, it's solving a very large number of
extremely small problems — one after the other — until it arrives at
the solution to the complex problem.

As a programmer, it’s your job to figure out which small problems
need to be solved to get the big answer. Once you know this, it's
a simple matter to type a series of instructions that tell the computer
how to solve these problems.

Of course, you must also insure that you tell the computer to solve
these small problems in the proper order if you want a meaningful
answer to your big problem. The process of organizing these
instructions is called programming.

If you're going to tell your computer what to do, you had better
tell it who or what to do it to. Your instructions must have information
or data to operate on.

For example if you write a line of code to tell your computer to
multiply two numbers, you must give it the two numbers before you
can expect it to do anything. We call these numbers data.

Most of the time you will type your numbers on a keyboard. When
you do this, you are inputting data. When you are done, the program
will operate on it and print your result on an output device like your
CRT terminal.

in the real world everything is categorized — or typed. Persons
can be men or women. Students can be in high school or college.
Servicemen can be officers or enlisted.

If you try to sell the customer an apple when he is starving for
an orange, you’ll go out of business. If you call a general a private,
you’ll wind up in the brig. Got the idea? You must always keep your
“types’’ straight.

In the programming world, the consequences of mismatched data
are just as severe. After all, how would you like to get a bill from the
IRS computer taxing you for a net income of one million dollars dur-
ing the past year when you actually made only one million cents?
Stranger things have happened! We’ll try to show you how to avoid
these pitfalls in this chapter.

You’'ll learn about several data ‘‘types’’ that are built in to
BASICO09. Programmers call them “‘atomic’’ data types. They include
BYTEs, INTEGERs, REAL numbers, STRINGs, and BOOLEAN
values.

Toward the end of the chapter, we’ll even show you how to define

56

your own data types. Before you're through, you'll know all about
the following BASIC09 words.

BYTE INTEGER REAL
STRING BOOLEAN DIM
TYPE

BYTE ON

Before we bite off more than we can chew, let’s digress for a
moment and talk about how computers store our data.

Many personal and business computers today use a
microprocessor that can work with eight bits of information at a time.
Because of this fact, many memory chips are also designed to store
eight bits of data at a time. A group of eight bits is called a “byte.”

Let’s picture a bit first. Imagine eight Christmas tree lights lined
up side by side with a separate on/off switch under each one. Now,
picture a piece of paper with a different number over each light. The
numbers would appear in the following order:

128 64 32 16 8 4 2 1
1

Binary Value = 32 + 8 + 2 + 1 = 43

If a light is on, we will let it have the value equal to the number
above it. If it is off, we will say that it has a value of zero. From here
on out we will pretend that the words “light’” and *‘bit”’ mean the same
thing. Now, close your eyes and imagine that an elf comes along and
turns off all the lights.

What are the eight bits worth? Not a doliar, that’s for sure! |f
you add up the value of each of the eight lights — remember their
value is zero when they are off — you’ll find their total value is zero.

Pretend now that another elf comes by and turns on the light to
the far left. What is the value of the eight lights now? You’'re right,
they have a value of 128.

Now imagine that someone turns on the light on the far right.
How much are the eight bits worth? Would you believe 1297

57

Yes, because 128, the value of the first light, plus one, the value
of the light that was just turned on, is equal to 129. And the beat goes
on. For every different combination of lights turned on, the total value
of the eight bits is different. In fact these eight lights, can have a value
ranging from zero when all the lights are off, to 255, when all lights
are on.

If you can let your imagination carry you one more step, you'll
getan “A” inthe course. Try it. Imagine those eight light bulbs being
eight memory cells in your computer. Each cell is a bit. The eight
cells together form a byte. Just like the light bulbs — that byte can
have a value ranging from zero to 255.

It may help you to think of a byte of memory as a little box where
you can store a number. That box has two qualities — a name, and
avalue. The value can vary from zero to 255, depending upon what
you put in it. We call the little box a variable since we can change
its value at will.

BASICO9 uses only one location in memory to store a BYTE
variable. For this reason, a number held in a BYTE variable must
have a value between zero and 255. When you want your computer
to store a variable as a BYTE, you must use a DIMension statement.
For example:

DIM age:BYTE

This statement causes BASICO9 to reserve one byte somewhere
in memory. It also recognizes this byte of memory by the name you
have just given it, ““age’. If later you write, ‘‘age = age + 1” the
value stored in that byte will be increased by one.

Remember, this point. You should always use DIM statements
to tell your computer how much memory you need to store a variable.
Once you DIM a variable, the computer reserves just enough memory
to hold that variable. And, when you use DIM statements, your
computer does not use up unnecessary space for variables that is
doesn’t need for the program.

Here’s something else you should know. When your computer
uses the data stored in your BYTE variables, it converts them to
INTEGER or REAL values before any calculations are made. This
means that arithmetic performed on data of the type BYTE won'’t be
any faster.

It still pays to DIMension variables as type BYTE when you know
for sure that all your data has a value between zero and 255, however.
Why? Because it takes 16-bits — remember the light bulbs — or two
locations in memory to store an INTEGER variable, and five
locations to store a REAL number. A BYTE variable always takes
one location.

58

You must be careful when you use BYTE and INTEGER variables
together. If you attempt to store an INTEGER variable with a value
greater than 255 in a variable of type BYTE, you could be in for a
surprise. BASIC09 will only save the least significant eight bits of your
16-bit variable. Your program will come up with the wrong answer
to the problem and you’ll wonder why.

INTEGER VARIABLES ARE WORTH MORE

If the largest value one BYTE can store is 255, how large a
number can you store in two bytes? Would you believe 655357 It’s
true. Let’s string out an additional eight imaginary lights. The pieces
of paper above them will read:

32768 16384 8192 4096 2048 1024 512 256

How can you recognize an INTEGER number? It’s easy! You
can tell by looking at the way it is printed on your terminal. INTEGERs
are always printed without a decimal point.

Here is a sample list of legal INTEGER constants.

12 -3000 64000
$20 $SFFFE $0
0 -12 -32768

BASICO9 uses two locations in memory to store a variable of type
INTEGER. The largest number that may be stored as an INTEGER
is 65535. Yet, this is only true when the number is “‘unsigned’’ which
is another way of saying it is always positive.

When you are using both positive and negative numbers — we
call them signed INTEGERs — the 16th, or most significant bit, is
used as a ‘‘sign’’ bit. If this bit is on — remember the light bulbs —
the number stored is counted as negative. Conversely, if it is a zero,
or off, the number is counted positive.

Since the 16th bit is now being used to indicate the sign of a
number, it can no longer be added in as part of the value of the
number. Since this bit position — or light bulb — has a value of 32768,
this means that the largest positive integer number that can be stored
in two memory locations is 32767. The largest negative number is
-32768.

59

This means that you must be very careful when you are
performing arithmetic or comparing integer numbers. Let’s look at
two addition operations.

TOTAL := 1000 + 1000
NEWTOTAL := 32767 + 1

After these assignment statements, TOTAL has a value of 2000.
And, at first glance, you would expect NEWTOTAL to have a value
of 32768.

Not true. NEWTOTAL’s value after this operation will actually
be -32768. Since 32767 is the highest positive number that may be
used in INTEGER arithmetic, BASIC09’s math routines wrapped it
around, modulo 65536.

The number 32768 has the 16th bit set. This means that it is
a negative number. It's value is -32768. To help understand, let’s
look at some light bulbs again. This time a one means the bulb (bit)
is on, a zero means it is off.

Positive Numbers:

0: 00000000O0OO0OO0COOOOO
1: 0000000000000O0O0 1
2: 000000000000O0O0T10O0
3: 000000000OO0OO0ODO0COO0T11
4: 000000000OOOCOOT1TO0O0
32765: 0111111 11111101
32766: 0111111111111 110
32767: 0111111111111 11A1
Negative Numbers:
-32768: 1000000000000O00O0
-32767: 100000000000000O01
-32766: 1 0000000000000 10O0
-32765: 10000000000000O011
-32764: 1 00000000000O0100
4: 111111111111 1100
3111111111111 1101
2: 1111111111111 110
1 1111111111111 111
0: 0000000000O0OO0OOOOO

60

You must also be careful when you compare INTEGER type
numbers between 32767 and 65535 because you are actually com-
paring negative numbers. For example, -32764 is greater than -32765
even though it’s absolute value is smaller.

Because it is so easy to fall into this trap, you should get into
the habit of checking only for equality, ““ =", or non-equality, “‘ < >"’,
when working with negative numbers. You should not check for
greater than, “>"’, or less than, ““ <’ conditions when working with
these numbers. If you do, you’ll only confuse the issue.

There’s another thing you should know if you plan on dividing
INTEGER numbers. The result will always have an INTEGER value.
If there is a remainder, it will be discarded. Remember, INTEGER
numbers never have anything to the right side of the decimal point.
In fact, they won’t even have a decimal point.

With these limitations why would you ever want to bother using
them in the first place? There are two major reasons. The first is
speed. Operations on INTEGER numbers are many times faster than
operations on REAL numbers. The second is storage. It takes only
two memory locations to hold an INTEGER number. It takes five to
hold a REAL number.

INTEGER variables make very good loop counters. You can use
a REAL number as an index in a loop. But, using an index of type
INTEGER will speed up execution about three or four times.

INTEGER numbers are also ideal tools to use when you need
to calculate addresses. They are especially handy in this application
when you type them in hexadecimal form.

To do this, you type a dollar sign, “$”’ in front of the number.
The lowest possible hexadecimal value of an INTEGER is zero, or
$0000. The highest is $FFFF, the hexadecimal equivalent of 65535.

DIM DATE:INTEGER

Finally, if you want to insure that BASICO9 types a variable as
an INTEGER, you must use the DIMension statement shown above.
The syntax is similar to that used to DIMension a variable of type
BYTE.

If you write a procedure and do not declare a numeric variable
with a DIMension statement, BASIC09 will automatically assume it
is a REAL number. For the sake of readability however, it is a very
good idea to always declare all variables.

A statement like this will do the trick for you.

61

REAL NUMBERS

DIM TWOPI:REAL

REAL numbers can be spotted easily — they're the ones with
the decimal point. Sometimes they even sport an “‘E’’. More about
that in a moment.

REAL numbers have a tremendous range. They can be as small
as 2.938735877 times 10 raised to the -39th power. Written in decimal
form, that would be:

.000000000000000000000000000000000000002938735877

Can you imagine counting all those zeros? It's no wonder
BASICO09 prints it like this:

2.938735877E-39

By the way, the largest REAL number you can store is
1.701411835 times 10 raised to the 38th power. Here we go again:

170,141,183,500,000,000,000,000,000,000,000,000,000
Again, you could get dizzy counting the zeros.

For those who are technically inclined, BASICO09 uses five bytes
to store each real number. The first byte holds the exponent of the
number. The last four hold the mantissa. The sign of the number
is stored in the least significant bit of the mantissa. Both the man-
tissa and exponent are in binary.

Here’s a common number printed in the usual way — then printed
in floating point notation. Let’s look at the parts of a REAL number.

1000000000 1.0E +09

If you haven’t bothered to count the zeros in the first line, there
are nine. That’s one billion.

in the second line, BASIC09 has printed the number in floating
point notation. Let’s look at it closer.

The mantissa — or value and sign of the number is 1.0. The
exponent is E +09. Which means that the number will contain nine
zeros if it is printed out.

The exponent can be either negative or positive. In this case
it is positive, so the zeros go on the left side of the decimal point. If
it were negative, the zeros would go to the right of the decimal point
in front of the mantissa.

If you have not DIMensioned a number to be of type REAL and
you want BASICO9 to store it as a REAL number, you must type a

62

decimal point when you enter it into your program. Again, BASIC09
will automatically print all REAL numbers with a decimal point.

Here are a few valid REAL numbers:

1.0 9.8433218 -.01
-999.000099 100000000 5655.34532
1.95E+12 -99999.9E-33

If REAL numbers have a range like this, why would you ever
want to use anything else?

There are two reasons. First, arithmetic operations with REAL
numbers often take more than fives times as long as operations with
INTEGER numbers. Secondly, REAL arithmetic may introduce roun-
ding errors into your calculations.

Rounding errors occur because of the way your computer does
arithmetic. For example, on some computers you could write an
instruction that divides 1 by 3 which is then muitipled by 3. What’s
the answer? Not 1, because the repeating fraction 1/3 cannot be
represented exactly. Instead, the result must be represented as
33333333 which multiplied by 3 gives .999999999 instead of 1. But
BASICO09 does careful rounding so it does come up with an answer
of 1. Try it. Then try it on your friend’s (non-BASIC09) computer.

Although the rounding effect has been minimized in BASIC09,
you should still be aware of it. If you need absolute accuracy, you
may want to use procedures to simulate long INTEGER operations.

If you are working with REAL numbers, you should be aware that
it takes a lot less time to multiply a number than it does to divide.
It you have a choice when you design your procedures, use multiply
instead of divide when you can.

You must also be careful when comparing REAL numbers.
Because of the rounding effect, two numbers that you think should
be equal — may not be, exactly. This could cause a test to fail and
send your procedure astray.

STRINGS HOLD A NUMBER OF CHARACTERS

STRINGs are groups of characters stored in consecutive loca-
tions in your computer’s memory. They give you a place to store
English language messages.

A STRING may be as short as one byte. If so, it would hold one
character. Remember, it takes one byte of memory to store each
character. On the other hand, the length of a STRING is limited only
by the amount of memory available.

63

There are two ways to declare a STRING variable. You may use
BASIC09’'s DIMension statement. Or, you may append a $ to the
variable’s name. For the sake of better readability and more efficient
memory usage, the DIMension statement is the preferred method.
Here are some examples.

Title$: = "The BASIC09 Tour Guide"”’
DIM Char:STRING[1]

DIM Page:STRING[1920]

DIM Answer:STRING

If you do not ask for a specific STRING length, BASIC09 will
reserve 32 bytes of storage. For this reason, both Title$ and “Answer”
may contain up to 32 characters. ‘““Char’’ only has room to store one
character, and ‘‘Page’” may hold as many as 1920 characters.

These values are maximums only and do not represent the ac-
tual length of the string. For example, the length of Title$ after the
assignment statement above is 22 characters. If you decide to change
the title, you only need to change the assignment statement:

Title$: = ""Microware’s BASIC09"’

You must however, make sure that the new name doesn’t con-
tain more than 32 characters. Just for the fun of i, try the following
statements in a procedure.

Title$: = "BASIC09 — A Truely Loveable Language!”’
PRINT Title$
Then run it and it will print:

BASIC09 — A Truely Loveable Lan

Did the message printed on your screen look line the line printed
above? See what happens when you try to put 38 characters in a
space that will only hold 32? BASICO09 does not print an error message
when you make this mistake. It simply truncates your string. That’s
what happened above.

If you really needed Title$ to hold a STRING longer than 32
characters, you would have to explicitly declare it as a STRING using
a DIMension statement. You would also have to specify the size. This
program line will do the job.

DIM Title:STRING[38]

What do you think would happen if you asked BASIC09 to
“PRINT Title”’ immediately after you typed the line above? Standby
for a surprise.

When BASIC09 executes the DIM statement above, it reserves

38 consecutive memory locations for you and gives them the name,
“Title”’. It does not assign a value to them.

64

The characters that just happened to be stored in those 38
memory locations before BASIC09 executed your DIM statement are
still there and you’ll see them when you, “PRINT Title’’. Because
of this, you must always assign your own value to your STRINGs
before you try to use them.

Incidentally, you may also create an empty STRING. This
statement would do that:

Title : = """

After this statement is executed, “Title’’ could still hold 38
characters. But, it wouldn’t.

Rather, Title would have a value and a length equal to what you
typed between the two quotation marks — absolutely nothing — or
zero.

You have created a special case, the “null’”’ STRING. It has a
length of zero. If you print it, you will see nothing on your terminal.
The concept is similar to setting an INTEGER or REAL variable to
zero. It’s sort of like drinking diet soda.

Sometimes — like when you’re trying to find a small string inside
a long string — you need to know the position of a character.

BASICO09 has functions that handle this task for you. But to use
them, you must know where to start counting. In BASICO09, the first
character of a string is always counted as character number one. This
is always true — even when you are operating in the BASE 0 mode.

The BOOLEANS

BOOLEANS — THEY’RE EITHER TRUE OR FALSE

Sometimes things are so simple that they are very hard to
comprehend. Such is often the case with data of the type BOOLEAN.

The range of values for BOOLEAN data is very short. It has only
two. A BOOLEAN can be TRUE. Or, it can be FALSE.

BOOLEAN values can not be used for numeric calculations. But,
they can be printed. If you print a BOOLEAN, you will see either a
four or five letter word on your screen.

65

You will see the word, TRUE or the word FALSE. The one you
see, depends on the value of your BOOLEAN data. | think we can
clear this up by using an example.

PROCEDURE score

DIM won:BOOLEAN

DIM Our__Score,Their _Score:INTEGER
Our__Score := 12

Their__Score : = 6

won := Our__Score > Their__Score
PRINT won

END

In the procedure above, we first declare “won’’ to be a variable
of the type BOOLEAN. '*Our__Score’ and ‘‘Their__Score’ are typed
as INTEGER. Then, we assign a value to ““Our__Score” and
“Their__Score”’. The next line assigns a value to the variable “‘won”’.
Here’s how it shakes out.

Since Our__Score has been assigned a value of 12 and
Their__Score has been set to a value of six, we are really asking
BASICO09 to determine if 12 is greater than six. Because this evaluates
as TRUE, the value of the variable ‘‘won’’ becomes TRUE. The final
line in our procedure merely prints the value of ““‘won” — or TRUE
— on your terminal.

Here is another way to write the test for the BOOLEAN value
of the variable “won‘. Take your choice.

IF Our__Score > Their__Score THEN
won := TRUE
ENDIF

BOOLEAN variables are usually set to the result of an expression
that makes a comparison. However, since they can also be set equal
to the value of other BOOLEAN variables, they are often used as
logical flags. You will often see them used with the AND, OR, XOR,
and NOT operators. Let’s try another example.

PROCEDURE Boolean_ demo
DIM done,tired,quit:BOOLEAN

done : = TRUE
tired : = TRUE

quit : = done AND tired
IF quit THEN

PRINT "OK, You can Quit.”’
ELSE

PRINT “"Better Keep Going!”’
ENDIF
END

66

Inthe PROCEDURE Boolean__demo, ‘‘done’”’ AND ‘‘tired’’ are
both set to a BOOLEAN value of TRUE. Thus, “quit” becomes TRUE
in the assignment statement which follows. Therefore, when the IF
statement is evaluated, BASICO9 will PRINT the message, ‘OK, You
can Quit”’ on your terminal.

Be careful that you do not confuse the BOOLEAN operators
above with the logical functions LAND, LOR, LXOR, and LNOT. The
latter operate on INTEGER values bit by bit and will not work with
variables of the type BOOLEAN.

BASICO09 does look after you here. If you try to store a non-
BOOLEAN variable — for example a REAL or INTEGER number —
in a variable of type BOOLEAN, you’ll receive an error message when
you try to run the procedure. And, if you're plotting to store a
BOOLEAN value in a variable of another type, don’t bother. You'll
get the same “type mismatch’’ error.

AUTOMATIC TYPE CONVERSION

Here’s a positive note. BASIC09 automatically converts all
numeric data to the proper type during compilation. This conversion
implies that you will seldom need to use the FIX or FLOAT operators.
But, if you try to mix data types illegally, BASIC09 will report a “‘type
mismatch’ error when you exit the Edit mode.

ARRAYS CAN HOLD A LOT OF DATA

It’s time to add some depth to our discussion of variables and
data as we show you how to use arrays. Pretend that you want to
put a message on your screen by printing the value of some STRING
variables.

For example, let’s say you want to print *‘I Program Well!”’. How
would you do it? Here's the easy way.

PRINT "1 Program Well”’
Or, you could write:

DIM word:STRING[14]

word := | Program Well”’

PRINT word

67

But, if we let you do it the easy way, we couldn’t show you the
advantages of arrays. Let’s divide that sentence up into three parts.
Try this procedure.

PROCEDURE print__message1
DIM word1,word2,word3:STRING[15]

wordl : = 1"

word2 : = “'Program”’
word3 : = “"Well!”
PRINT

PRINT word1; " '
PRINT word2; "'’
PRINT word3
PRINT

END

This procedure will work just fine. When you return to the system
mode and type RUN, it will print, *‘I Program Well!"’ for you. Now,
imagine that you want to print a sentence that has 15 words init. You
would be typing forever. There must be a better way.

Enter our friend, the array. Let's rewrite that procedure.
Remember, we want it to print the message, ‘| Program Well!”” Try
this:

PROCEDURE print _message2

DIM words(15):STRING[15]

DIM wordcount,number_ _of _words:INTEGER

DATA 1", “"Program’’,” " Well!"”

number__of _words : = 3

FOR wordcount : = 1 TO number__ of_ _words
READ words(wordcount)

NEXT wordcount

PRINT

FOR wordcount : = 1 TO number_ of words
PRINT words(wordcount); '

NEXT wordcount

PRINT

END

The second procedure is the best alternative? Can you see its
advantages?

68

The first procedure would take forever to write if you had more
than a handful of words to print. The second can print any number
of words just by changing the DIMension of the array “‘words’’.

Besides, if you change the READ statement in the second
procedure, you could easily pull the words you are printing from the
keyboard or a disk file. By using a simple vector — another name
for a one dimensional array — you have made your procedure many
times more versatile.

You can also think of an array as a subscripted variable. Essen-
tially, there are 15 variables named “words’” — 15 little boxes if you
will — in the procedure above.

Arrays are handy because they make it easy for you to assign
a lot of values to a lot of variables. And since the subscript of a vari-
able — wordcount in our procedure above — is also a variable, life
is much easier.

There’s one more thing you should understand about subscripted
variables. The subscript is not the value assigned to the variable.
For example, in our procedure above, when the value of wordcount
is one, the value of words(wordcount) is ““I”’. When wordcount has
a value of two, words(wordcount) has a value of ‘‘Program’’, etc.

Here are two more statements that declare an array:

DIM screen(80,24):BYTE
DIM CoCoScreen(32,16):BYTE
DIM cube(3,3,3):BOOLEAN

You could use the first statement to store characters that you
want to print on your standard 80 by 24 terminal. You could use the
second to do the same thing on a TRS-80 Color Computer. The third
could hold the status of each part of a Rubik’s Cube.

In the first example — if you are operating in BASIC09’s "BASE
1’ mode — the character in the upper left hand corner of the screen
will be named, “‘screen(1,1)”".

If you ask for an array base of zero — by using the BASIC09 state-
ment, “BASE 0 — this character will be “screen(0,0)”. If you do
not specifically ask for an array BASE of zero, BASIC09 will
automatically assume that you want to use a BASE of one.

We showed you an array of strings because they are easy to read
and understand. But, there is nothing stopping you from DIMension-
ing an array of any BASIC09 data type. In fact, you can even build
an array from complex data types that you define yourself.

69

COMPLEX DATA TYPES

What about the advanced programmer? How does he store a
name, address and zip code in a computer’s memory in an orderly
fashion. Observe.

EXAMPLE NO. 4: GETNAME

PROCEDURE getname

0000 (* Demo of complex data types *)

0020 (* Input data into a complex name-address structure *)
0056 (* Then print it to the terminal. *)

007A

007B TYPE item =name,address(2):STRING[40]; zip:REAL
009A

009B DIM record:item

00A4

00A5 PRINT

00A7 PRINT ""Please enter the data requested.”’

00CB PRINT "Type <RETURN > for a name to end this session.”

00FC

O0OFD LOOP

00FF

0100 PRINT

0102 INPUT ""Type a Person’s Name: ““,record.name
0124

0125 EXITIF record.name="""" THEN
0134 ENDEXIT

0138

0139 INPUT “First line of address: "",record.address(1)
015E INPUT "“Second line of address: "“,record.address(2)
0184 INPUT "“Type the person’s ZIP code: ",record.zip
01AC RUN displayname(record)

01B6

01B7 ENDLOOP

01BB

01BC END

PROCEDURE displayname
0000 (* This procedure prints a record gathered by "GETNAME . *)

003C

003D TYPE item =name,address(2):STRING[40]; zip:REAL
005C

005D PARAM record:item

0066

0067 PRINT

0069 PRINT "'Here is your record: "’

0082 PRINT

0084 PRINT record.name
008C PRINT record.address(1)
0096 PRINT record.address(2);

00A1 PRINT "',

O00AB PRINT record.zip
00B3 PRINT

00B5

00B6 END
70

The procedure above demonstrates BASIC09’s complex data
types. The programmer has combined a STRING, an ARRAY of two
STRINGS, and a REAL number into a singular data type called an
item. He then declared that each record would look like an item in
memory and proceeds to ask you to fill in the blanks.

When you type a name, it is stored in the variable called
record.name, which is the first part of an item. Notice that you have
40 character spaces reserved in memory for your answer. It could
just as easily have been set to 24 characters. It’s all up to you, the
programmer.

BASIC09’s data typing features let you define variables to fit the
shape of the data you must store. Additionally, they let you combine
your own data types into larger data structures when they are need-
ed. Further, they let you give English language names to data fields.
Your programs are easier to read and understand.

The PROCEDURE ‘“‘getname’ also demonstrates the use of
modules. In fact, it shows how entire data structures can be passed
as parameters to other procedures. In the PROCEDURE ‘‘getname”’
an entire record is passed to the PROCEDURE ‘‘displayname’’. We’'ll
talk more about modularity and parameters in Chapter 12. For now,
we’ll limit the discussion to data types.

What is a complex data type?

I’m glad you asked? The whole objective of a high level, interac-
tive programming language like BASICQ9 is to make your life easy.
Complex Data Types do just that.

Pretend for a moment that you have been really successful in
your programming efforts and you now have more than 500 regular
customers. You've decided that it’s about time to use your computer
to make record keeping easier.

To do this, you need to write a procedure that will exercise a data
file that holds each customer’s name, address, and current balance.
The first thing you must do is define your data structure. Here’s one
BASICQ9 statement that will work.

TYPE customer rec = name,address(2):STRING[40] ; balance:REAL

This statement tells BASICO09 that you want a customer record
to be made up of four parts. The first part of the record holds your
customer’s name. |t is a string variable named ““name’’ and is DIMen-
sioned to hold 40 characters.

The second part of each record is an array that holds two
elements. The first element in the array stores your customer’s street
address, the second holds his City, State, and zip code. The final
part holds his current balance, a number of type REAL.

7

The statement before creates a new data “‘type’’ for you. It does
not reserve any memory for your data however. To reserve memory
you must use the DIMension statement. And, since the DIM statement
accepts user-defined types, you can now use customer__rec as a data

type:
DIM customer__file(50):customer__rec

That’s all it takes. You have defined an array and reserved
space in memory for 50 customer records. Each one of those records
can hold data of the type ‘‘customer__rec".

To access the data in the array, you must use the field name
as well as the array index. Let’s look at a few sampie assignments.

name$: = customer_ file(10).name
Street$: = customer_ file(10).address(1)
City__State$: = customer__file(10).address(2)

The first statement reads element number 10 (the 10th customer’s
name) from the array you named customer__file. It assigns the value
it finds there to a STRING variable called, name$.

The second statement works the same, except it reads the first
element in the array called “‘address’, from the 10th element of an
array called customer__file. It then assigns that value to the STRING
variable named Street$. The third line reads the same customer’s
City, State and ZIP code from the second element in the array.

There’s only one limit to your creativity. All new data types you
define must be one dimensional.

However, since your data types can be made up of any of
BASIC09’s five atomic data types — as well as — any complex types
that you have previously defined, there is almost no limit.

72

Here’s a procedure that demonstrates a very complex data type.

EXAMPLE NUMBER 19: STRUCTST
PROCEDURE structure

0000 (* example of intermixed array and record structures
0034 (* note that structure d contains 200 real elements

0067

0068 TYPE a=one(2):REAL
0078 TYPE b=two(10):a
008A TYPE c =three(10):b
009C DIM d,e:c

00A9

00AA FORi=1TO 10

00BC FOR j=1 TO 10

00CE FOR k=1TO 2

00EO PRINT d.three(i).two(j).one(k); " *;
OOFF d.three(i).two(j).one(k): =3.1459
0120 PRINT e.three(i).two(j).one(k); " '
013F NEXT k

014A NEXT j

0155 NEXTIi

0160

0161 (* This is a complete structure assignment *)
018E

018F e:=d

0197 PRINT

0199

019A FORi=1TO 10
01AC FOR j=1TO 10

01BE FOR k=1TO 2

01DO PRINT e.three(i).two(j).one(k); '
O1EF NEXT k

01FA NEXT j

0205 NEXT i

0210

0211 END

This procedure shows how you can mix arrays and record
structures.

Remember, we tell BASICO9 that we need an array by entering
the number of elements in parenthesis directly behind the name of
a variable. In our procedure, the array is “‘one’”’. Data of the type
“a’” contains one field which is an array, named “‘one’’, which con-
tains two real numbers. BASICO9 is operating in its default BASE1

mode.

How many elements would there be in the array ‘‘one” if we were
operating in the BASEO mode? |f you said three, your are right. In
BASEO we would have element number zero, element number one,
and element number two. In BASE1 we have only element number
one and element number two.

73

Now, let’s look at data of the type “‘b’’. From the type statement
we can determine that it is an array that holds 10 elements of type

“a”. Since each element of data type “‘a’’ holds two REAL numbers,
data of type ‘b’ will hold 20 REAL numbers. Got the idea?

When the pattern becomes clear, you’ll wish you had invented
the language. So, how about the data type named “‘c’? What does
it hold? Let’s look close.

Since data TYPE ‘‘c’’ holds 10 elements of TYPE ‘‘b’’, and “‘b”’
holds 20 REAL numbers, data of TYPE ‘¢’ contains 200 real
numbers.

Now, look at the next line. Remember, the DIMension statement
is where you ask BASICO09 to reserve memory for your data. Here
you are requesting enough memory to hold two complex variables

661

— one named ‘‘d”’, the other named “‘e’’.

You are asking BASICQ9 to reserve 2000 bytes of memory —
1000 for ““d’’ and 1000 for ““e”’. You need this much memory because
both variables are of TYPE ‘‘c’’ and, therefore, contain 200 REAL
numbers each. Did you remember that it takes five bytes of memory
to store each REAL number?

Next, the procedure prints out the original value of each field of
the complex variable named ‘“d”. It then sets each field in that variable
equal to the value of “‘pi’’ and prints the value of each element of the
complex variable “‘e’’.

The magic follows. The line “‘e: =d’’ sets complex variable *‘e”’
equal to complex variable ““d”’. Then, to prove that it works, it reprints
“e”. Take a look for yourself. It really works.

Let’s look at another example. Believe it or not, you may assign
one type of data to a record of another type — if you know exactly
what you are doing. Just be extremely careful when you do it. Study
this procedure.

74

EXAMPLE NUMBER 20: CONVERT

PROCEDURE convert
0000
0001 TYPE simple =item:STRING[32]
0011 TYPE complex =ascii(32):BYTE
0021
0022 DIM first:simple
002B DIM second:complex
0034
0035 PRINT "“This procedure converts strings to decimal ASCH values.”’
0071 INPUT “Enter a string less than 32 characters: " first.item
00A5
00A6 second =first
00AE
00AF FOR index=1 TO LEN(first.item)
00C6 PRINT second.ascii(index); ' -"’;
00D8 NEXT index

00E3

00E4 PRINT
00E6

00E7 END

This procedure shows you the quick and dirty way to convert a
STRING of characters into an array of BYTES.

The first two lines define two new data TYPEs. Simple is defined
as a STRING named item which can hold up to 32 characters and
complex is defined as an array of 32 BYTEs.

The next two lines request memory for the variables first and se-
cond. Notice that first is DIMensioned as TYPE simple, which means
it contains a STRING with a field named item that can be up to 32
characters long. Second is defined to be of type complex, which
means that it holds an array named ascii which holds 32 elements
of type BYTE.

After requesting memory from BASICO09, the procedure asks you
totype a STRING. Then, it sets the value of second equal to the value
offirst in one statement. Notice that this process works, even though
the two variables are of different TYPES.

Do you see how you can get in trouble if you don’t watch what
you are doing. For example, what happens if you define complex to
hold an array of INTEGERSs instead of an array of BYTES?

The moral of the story. You can take short cuts but make sure
you know exactly what you are doing.

75

SUMMARY

It’s about time for you to take a break. You’ve had your work
cut out for you in this chapter. You've learned how data is stored
in your computer and how it can take many different forms. You’ve
been introduced to BYTEs, INTEGERs, REALs, STRINGs,
BOOLEANSs, and ARRAYs. You've even learned how to define your
own data types.

Now that you know all about data, stand by! We’ll introduce you

to some real operators and expressions in the next chapter. You'll
really begin to function as a programmer.

76

CHAPTER EIGHT

expressing yourself clearly

Welcome aboard the express bus. Don’t worry, your Mercedes
will be safe in the lighted parking lot while we take this short detour.

We’re changing the approach a bit in this chapter. After introduc-
ing you to functions, operators, and expressions, we’ll refer you to
Part IV where you’ll find an Encyclopedia of BASIC09 keywords.

In the encyclopedia you’ll find a description of every reserved
word in BASIC09 — presented in alphabetical order. Words are
classified according to their function and sample procedures are listed.
A “"RUN"" of each procedure is printed so that you can prove to
yourself that it works. We’ll also give you a list of related words that
you may wish to study.

In this Chapter you’ll be introduced to:

Assignment Statements
Control Statements
Directive Statements
Declarative Statements
Functions

Expression Operators

STATEMENTS — THEY DEFINE AN ACTION

You can compare a statement in a procedure to a sentence in
a “how to” article. Statements tell your procedure what to do to your
data. Most of the time, one statement tells your computer to perform
only one task.

BASICO09 statements may contain up to 255 characters. Since
most terminal’s can only print 80 characters on a line, BASICO09 lets
you use line feeds when you type long statements to divide your state-
ment into two or more physical lines and makes it easier to read.
Yet, the computer still sees only one statement.

You can also put more than one statement on a line in your pro-
grams by using a backslash character. *“\ "', to separate individual
statements. It is best to avoid this feature whenever possible, however,
because it makes programs hard to read and edit.

BASICO09 procedures are made up of a series of statements. By
completing a number of small tasks — one per statement — in the
proper order, your computer can solve big problems.

Several types of statements are recognized by BASIC09. They
each do a different job. Let’s take a closer {ook.

ASSIGNMENT STATEMENTS

Assignment statements do just what their name implies — they
assign a value to a variable or memory location.

In the last chapter we told you to think of the memory in your
computer as a number of little boxes where you may store data. We
also told you that that these boxes have a name and a value. Assign-
ment statements change the value of the data in those little boxes.
For example:

LET any_ number : = 10
LET double number := any__number * 2

The colon and the equal sign together, *“: ="’ are read as
“becomes’. Assignment statements can also use a single equal sign,
“="" but this format is discouraged. Your programs will be easier
to understand if you always use becomes, “:="’, in an assignment
statement and an equal sign, “="’, when you are testing for equality.

After the two lines above are executed, the variable any _number
has a value of 10 and double__number a value of 20.

Every time BASICO09 executes an assignment statement, the
value of the variable named in the statement is changed. Any value
that was stored there before is gone forever. Be careful — especially
when you assign a value to the same variable more than once in the
same program.

BASICO09 lets you take a shortcut when assigning values to
variables. You do not have to use the word LET. Thus, the
assignments above could be made like this:

any__number := 10
double_ number : = any _number * 2

78

CONTROL STATEMENTS

Control statements are like traffic cops. They control the flow
of your procedures. We'll pick up the detail in Chapter Nine as we
show you how to add structure to your programs. For now, here's
a short sample:

PROCEDURE control__demo
DIM number:INTEGER

number : = 1

WHILE number < 10 DO
PRINT number
number : = number + 1

ENDWHILE

END

The WHILE ... DO statement in the procedure above tells the
computer to print the value of the variable ‘““‘number’’ and then add
one to it over and over again until the value reaches 10. When that
happens BASICO09 jumps out of the loop and executes the statement
on the line that follows the word ENDWHILE. Try it!

Directive Statements

Directive statements are used to tell BASIC09 or OS-9 to do
something. Your jobs may range from changing your current data
directory or current execution directory to turning the debugger’s trace
mode on and off. Here’s a directive statement that tells BASICO09 to
call the OS-9 Shell and print a listing of the directory on the disk you
have installed in drive zero:

SHELL ““dir e /dO"’

Declarative Statements are used to define data TYPEs and re-
quest memory for data storage. We gave you the details in Chapter
Seven.

Input/Output statements give you a way to talk to the outside
world. Chapter 10 is dedicated to them.

And finally, operators are the verbs that tell your programming
sentence which operation to perform.

FUNCTIONS PERFORM MANY JOBS

You can think of a function as a magic word that lets you perform
some job automatically. For example, you use a function to find the
square root of a number or the sine of an angle. When you type the
name of the function, BASICO09 calls in a fast machine level subroutine

79

to do your job. For example, here’s how you find the square root of

the number stored in variable “‘x’’.:
root : = SQRT(x)

Basic09 has a vast assortment of different functions, so you’ll
find functions in the Encyclopedia to do many jobs. Some of them
work with INTEGER and REAL numbers while others work with
STRINGs of characters. A few perform logical operations and
three return a BOOLEAN value of TRUE or FALSE.

Many functions perform calculations on numbers that you supp-
ly in your statements. Most return a value of a specific data ““type’.
The Encyclopedia listings in Part IV show what you need to give a
function and what you can expect from it. Sample procedures show
many functions in action.

OPERATORS — THEY'RE ALL ACTIVE VERBS

Operators do the work in your procedures. With them you can
add, subtract, multiply and, divide — and much more.

For example, if you want to tell your computer that a number

should be negative, you simply type a minus sign, -, in front of it.
Here’s how you do it.

LET a_ number := -25

In our example, a__number has been negated. After this state-
ment is run, the value of a__number is minus 25. When you run this
statement, you are using BASIC09’s ‘“‘unary negation operator’.

How’s that for a buzzword!

Another operator lets you raise a number to a power. Yet another
aliows you to join STRINGs together with a plus sign, “ + .

a__new__number : = an__old__number T 2

my__number : = your__number ** 2

First__string$: = ""Hello ”

Second__string$: = “everyone!”’

A__longer__string$: = First_string$ + Second__string$

The first two statements above run the same. You can type either
the up arrow, “1”’, or two asterisks, ‘“**”’, to tell BASIC09 you want
to raise a number to a power.

Another special group of operators lets you determine the rela-
tionship between the value of one variable or expression and another.
The symbol for each operator and its English language meaning is
listed here.

80

equal to
> not equal to
less than
less than or equal
greater than
greater than or equal

VVIAAADN

The symbols you see above are the actual operators you will use
in your programs. The words merely describe them. Operators of
this type return a Boolean value because they always evaluate as
TRUE or FALSE.

Other Boolean operators are used when more than one condi-
tion needs to be tested at the same time. For this reason you'll often
see NOT, AND, OR and XOR used with the IF ... THEN statement.

For example:

IF2 > 1 AND 3 < 4 THEN PRINT “You’re Right!”” . ENDIF
IF2 > 1 OR 4 < 3 THEN PRINT "Right Again!”’ ~ ENDIF

When you must determine if one number or character is equal
to another, you need some basis of comparison. BASIC09 uses the
ASCII collating sequence. ASCII is an acronym that stands for the
American Standard Code for Information Interchange.

Under the ASCIl system each character has a unique numeric
value, which is true for numbers, letters and any other character
transmitted or received by your computer. Because of this standard
our computers can communicate with terminals, printers, etc. They
can also communicate with each other.

For example, the number zero, “‘0”, in ASCII has a numeric value
of 48 decimal; one, ‘1", has a value of 49; etc. If your computer sends
mine a character with a decimal value of 48, my computer knows that
yours is trying to send a zero, “0".

Here’s a table that shows the ASCII value of capital letters in the
alphabet.

LETTER DECIMAL VALUE

65
66
67
68

ooOw>»

88
89
90

N < X -

81

OPERATOR PRECEDENCE

In society, some people have more power than others. Bankers
get more done than bakers. Generals order sergeants to do almost
anything.

Likewise, some operators have more power than others. Pro-
grammers call this precedence. Essentially it means that an expres-
sion is evaluated in a very specific order. According to BASIC09's
rules of precedence, operations take place in the following order.

1. BASICO9 starts at the left side of an expression and moves
towards the right.

2. Constants or variables that must be forced negative are
handled.

3. Any power (exponentiation) operations are done.

4. At this point, BASICO09 starts over at the left end of the ex-
pression and does all multiplications and divisions.

5. Then, all additions and subtractions are done.
6. And finally, Boolean expressions are evaluated.

Sometimes, you need to override the natural precedence of the
language. BASICOQ9 lets you do this by using parentheses. All
expressions enclosed in parentheses are evaluated first. Remember
this trick. It’s a good thing to know. Let’s look at an example.

6+2*4*3 (vields 30)
6+2*4+3 (vields 96)

Notice that in the first example, multiplication is done first. In
the second, the addition was done first since it was enclosed in
parentheses.

If operators in an expression have equal precedence they are
evaluated left to right. There is one exception however — exponen-
tiation is evaluated right to left. Speaking of exponentiation, BASIC09
will not let you raise a negative number to a power.

EXPRESSIONS — THEY HAVE A VALUE

An expression is a set of rules used by a statement to tell a pro-
cedure how to compute a value. It combines one or more operands
with operators. An operand may be a constant, the current value of
a variable or the result returned by a function.

82

Expressions always evaluate to one of BASIC09's five ‘‘atomic”
data types. Because of this, the result of an expression must be of
“type’’ BYTE, INTEGER, REAL, STRING or BOOLEAN.

Data types may be mixed within expressions, in fact, many times
the evaluation of an expression results in a value which has a different
data type than its operands.

Here are some valid expressions:

a:=b+c*2

a:= (b+c+d)e
a:=b>cANDd>eORc=e
a=b-=o0c

The first example multiplies the current value of the variable ‘‘c”’
times two and adds the current value of the variable “‘b’’ to the result.
The result is stored in the variable “‘a’”’.

The second adds the current value of the variables “‘b”’, “‘c”’,
and ‘‘d”, and divides the result by the value of the variable “‘e”’. The
result is put in the variable “a’’.

The third and fourth expressions may seem a little strange. In
both, the variable “‘a’”’ must be of type BOOLEAN because the ex-

pression on the right hand side of the ‘“‘becomes’ symbol, “:=",
returns a BOOLEAN result.

The final expression evaluates as TRUE if the current value of

the variables ““a’”’, ‘b’ and, *‘c’’ is equal. Otherwise, it returns a value
of FALSE. Again, the result is stored in the variable “‘a’.

BASICO09 lets you mix the three numeric data types in an expres-
sion. Mixing is possible because BASIC09 does automatic type
conversion before an operation.

AUTOMATIC TYPE CONVERSION

If you mix an INTEGER and a REAL number in an expression,
the result will be of type REAL because REAL numbers have a greater
range than INTEGER numbers.

You must be very careful when assigning the result of an expres-
sion to a variable of type BYTE or INTEGER. The result must always
be within the range of the data TYPE you are assigning it to. If not,
the result may be an error.

For example, when you assign an expression to a variable of data
type BYTE, the result must have a value between zero and 255.
Likewise, when you assign a result to a variable of type INTEGER,
it must have a value between -32768 and +32767. If you feel like

83

you need a review of BASICO9 data types, take time now to review
Chapter Seven.

Remember, every statement, operator, and function of the
language is described in our encyclopedia of BASIC09 in Part IV.
Browse through it now and then use it as a reference while you
program.

SUMMARY

In this chapter we gave you an overview of statements, operators,
functions and expressions. Take a quick break now, and then join
us in Chapter Nine where we’ll show you how to add structure to your
programs.

84

CHAPTER NINE

control structures let you
go with the flow
B W

A journalism professor once told me that life has no order. ‘Writers
must add structure to life to bring meaning to the reader’, he said.
What a challenge!

As a programmer, you face a similar challenge. You must add
structure to your programs to bring meaning to the computer. If you
fail to add structure, your programs may run around in circles and
never do any work for you.

The real power of your computer lies in its ability to perform a
number of simple tasks over and over again at great speed. It’s up
to you however, to tell it when to stop. If you don’t — it won’t. It will
be perfectly content to sit there and do the same thing forever.

When you tell your computer to repeat a particular statement or
series of statements many times, you are creating a “‘loop’’. Loops
come in several different shapes and sizes. We’'ll introduce you to
five in this chapter.

We’'ll show you how to force your computer to make a decision
and how to trap expected errors without aborting your program. You’ll
be introduced to these control structures:

IF ... THEN ... ELSE

FOR ... NEXT
WHILE ... DO

85

REPEAT ... UNTIL
LOOP ... ENDLOOP
EXITIF ... THEN ... ENDEXIT

GOTO
GOsuB
ERROR
ON ERROR GOTO

We’ll start our discussion of structure by looking at two versions
of the same procedure. The first example is written in standard BASIC
and uses line numbers. The second takes advantage of BASICO09.

SIGNTEST

PROCEDURE oldsigntest
0000 100 INPUT “Please type any number: “,x
0023 110 IF x>0 THEN 150
0036 120 IF x<0 THEN 170
0049 130 PRINT ""The number is zero. "
0063 140 GOTO 180
006A 150 PRINT ""The number is positive.’’
0088 160 GOTO 180
008F 170 PRINT ""The number is negative.”’
00AD 180 END

NEWSIGNTEST

PROCEDURE newsigntest

0000

0001 (* Show BASIC09’s control structure *)
0027 (* solving the Signtest problem *)
0049

004A DIM number:INTEGER

0051

0052 INPUT “Type a number: "“,number
0069

006A PRINT

006C

006D IF number>0 THEN

0079 PRINT 'Your number is positive."’
0095 ELSE

0099 IF number <0 THEN

00AS5 PRINT "Your number is negative.”
00C1 ELSE

00C5 PRINT ""Your number is zero.”
00DD ENDIF

00DF ENDIF

00E1

00E2 PRINT

00E4

00E5 END

86

The PROCEDURE oidsigntest is simple, yet you can barely
read it. If it were 80 lines long, you probably wouldn’t even try. You
just don’t need the aggravation of meaningless line numbers.

Let’s trace the flow of this procedure anyway. When you type
RUN, the computer asks you to type a number. It compares the
number you type to zero. If the number is greater than zero it goes
to line 150 where it prints the message, ‘“‘“The number is positive.”
It then executes the instruction at line 160 which tells it to GOTO line
180 — the END of the program.

If you type a negative number, the test at line 110 fails and the
program falls through to line 120. The result of the test on this line
will be true and the program goes to line 170 where it prints the
message, ‘‘The number is negative.”” Line 180 is executed next and
the program ends.

If you type the numeral *‘0”’, the tests at line 110 and line 120
both fail, and the program falls through to line 130 and prints the
message, ‘‘The number is zero.”” After printing the message, the pro-
gram executes line 140 which tells it to go to line 180 — the end of
the program.

As you followed the description of SIGNTEST’s program flow,
you probably had a few questions. Why use meaningless symbols
like line numbers to control program flow? Why use meaningless
names for variables? What on earth does ‘x”’ mean?

Now study the procedure newsigntest. Compare it with signtest.
Which one is easier to understand? The IF ... THEN ... ELSE ... ENDIF
construct is only one of the BASIC09 control structures you’ll learn
in this chapter.

OLDLOOPCOUNT
PROCEDURE oldloopcount
0000
0001 (* Show method of counting in standard BASIC *)
0030
0031 (* Note: You must hit the “Control C” key *)
005E (* to get out of this loop *)
007B

007C 10 LET N=1
0088 20 PRINT N
009030 LET N=N+1
00AO0 40 GOTO 20

The procedure oldloopcount is written in standard BASIC. It uses
line numbers and a meaningless single character for a variable name.
It also uses the BASIC verb GOTO which tends to make your programs
unstructured. Let’s compare it to the procedure newloopcount.

87

LOOP ... ENDLOOP — IT

NEWLOOPCOUNT

PROCEDURE loopcount

0000

0001 DIM loopindex,topcount:INTEGER
o0ooC

000D PRINT

000F INPUT “How high shall we count? "' ;topcount
0030 PRINT

0032

0033 FOR loopindex=1 TO topcount
0044 PRINT "“"Number ’; loopindex
0053 NEXT loopindex

005E

005F PRINT

0061 END

The procedure newloopcount uses two variables named,
loopindex and topcount and declares them to be INTEGER numbers.
It asks you how high you want to count and stores the value of the
number you type in the variable topcount.

Another loop prints the message, ‘‘Number 1", etc. Each time
the procedure runs through the loop, the number printed is increased
by one because the statement “*“NEXT loopindex’’ increases its value
by one. Finally, after printing the value of topcount, the procedure
stops.

Can you tell the difference between standard BASIC and
BASIC09? You can almost read the BASIC09 program in English.
It documents itself. And it sure looks clean without those tacky line
numbers.

Notice how the names of the variables loopindex and topcount
tell you what they do. Notice also how all BASIC09 key words are
automatically printed in uppercase letters to make them stand out from
the variables which we typed using all lowercase letters. Actually,
we left the keyboard in lower case mode and let BASICO09 do the work.
Talk about lazy.

COULD GO ON FOREVER!

We'll start our detailed discussion of BASICO09 control structures
with the most general loop — LOOP ... ENDLOOP.

Imagine that you want to write a program that prints a character

on your terminal’s screen every time you strike a key. Most terminals
do this for you automatically, but a simple loop can also do the job.

88

PROCEDURE echo_ forever
DIM char:BYTE
LOOP
GET #0,char
PUT #1,char
ENDLOOP
END

This procedure first gets a character from your keyboard and
immediately sends it to your terminal’s screen. Remember, the
BASIC09 and the OS-9 operating system always use device number
zero, ‘‘#0’’, as the standard input device and device number one, “#1”,
as the standard output device.

What happens after our procedure sends the first character to
the screen? I'm glad you asked. When it hits the ENDLOOP state-
ment, it goes back to the LOOP statement and starts over again. There
is no elegant way to exit from this procedure. It will run forever —
or at least until you hit the terminal with an axe or type ‘“‘Control C”’
on the keyboard.

Are there other ways to escape? To find out, let’s reach deeper
into BASIC09’s bag of tricks.

EXITIF — A WAY TO ESCAPE FROM A LOOP

EXITIF — here’s a statement that sounds promising. Let's
rewrite the procedure:

PROCEDURE echoforawhile
DIM char:BYTE

LOOP
GET #0,char
EXITIF ASC(char)=$1B (* ESCAPE *)
PRINT "“"Don’t frown, you told me to ESCAPE."”’
ENDEXIT
PUT #1,char
ENDLOOP
END

What do you think will happen when we run the procedure
echoforawhile? Do you think it will echo characters until you type the
ASCIl <ESCAPE > key and then quit? Try it!

The word EXITIF gives you a way to escape from an endless
loop. It is not limited to use with the LOOP ... ENDLOOP construct.
You can also use it within a FOR ... NEXT loop, a REPEAT ... UNTIL
loop, or a WHILE ... ENDWHILE ioop, etc. Here’s how it works.

89

When BASICO09 sees the word EXITIF it evaluates the BOOLEAN
expression that follows it. If the BOOLEAN value is FALSE, the
procedure goes on to the line following the word ENDEXIT and
continues.

If however, the statement following EXITIF evaluates as TRUE,
your procedure executes the instructions between the word EXITIF
and the word ENDEXIT. It then continues with the statement following
the word ENDLOOP.

EXITIF is a very handy word since it lets you take care of any
unfinished business when you exit a loop. It's always a good idea
to clean up your mess before you move on.

A programmers life is much simpler when he uses EXITIF to trap
errors and exit from an illegal situation gracefully. It’s even better
when he lets EXITIF print a short message to explain what happened
at the same time. Try this!

PROCEDURE exitgracefully
DIM num,val,minimum:INTEGER

num := 100\ minimum := -10
REPEAT
num : = num-1

EXITIF num <0 THEN
PRINT “Error — You can’t take the square’’;
PRINT “‘root of a negative number!”
ENDEXIT
val : = val + SQRT(num)
UNTIL num < minimum
END

What happened when you ran this procedure? Did you notice
that the value of the variable ‘“‘num’’ never comes close to the value
of ““‘minimum‘?

We assigned -10 as the value of minimum early in the procedure,
but we can never arrive there because we told the EXITIF statement
not to let the value of the variable num go below zero. Essentially,
we have let the EXITIF statement catch an error in our program. Then,
we let it print a message to tell us what happened.

CONTROL OF PROGRAM FLOW

In standard BASIC the programmer’s control of program flow
is limited. Most versions allow only the “GOTO "', “GOSUB"’, “IF-
THEN-<LINE NUMBER > ", and “"FOR-NEXT '’ constructs.

BASICO09 gives you several additional looping constructs so you
may pick the best loop for the job. You can use a WHILE ... DO loop

90

or a REPEAT ... UNTIL loop. Or, you can pick a structure that loops
forever. It’s called LOOP ... ENDLOOP.

Here’s another example where the programmer escapes from
a BASICO09 loop in a special case by using the EXITIF statement. Enter
and RUN the procedure multiply.

MULTIPLY
PROCEDURE multiply
0000
0001 REM Demo of EXITIF-ENDEXIT and LOOP-ENDLOOP
002B REM Multiplies two real numbers for user and prints result
0064
0065 DIM multiplier,multiplicand,product:REAL
0074
0075 PRINT
0077 PRINT
0079 PRINT "Type the two numbers you would like to multiply.”
00AD PRINT 'Separate them by commas. Example: 6,3 <return> "’
00E1 PRINT
00E3 PRINT "Type two zero’s to quit.
0100 PRINT
0102 PRINT "Enter your numbers here: "’
011F PRINT
0121 PRINT
0123
0124 LOOP
0126
0127 INPUT multiplicand,multiplier
0130
0131 EXITIF multiplier=0 THEN
013E PRINT
0140 PRINT "It was nice working for you!"”’
0160 PRINT "Bye now.”
016C PRINT
016E ENDEXIT
0172
0173 product = multiplicand* multiplier
017F
0180 PRINT multiplicand; " times "’; multiplier; '* equals "’; product
01A2 PRINT
01A4
01A5 ENDLOOP
01A9
01AA END
01AC

When you run the procedure “‘multiply’’, you are asked to enter
two numbers. The procedure then multiplies the two numbers and
prints the result. It will continue then until you tell it you want to multiply

91

a number by zero. When you type a ““0”’, you trigger the EXITIF
statement, a thank you message is printed and the program ends.

Notice that BASICQ9 automatically indents statements within a

loop, giving you a visual image of program flow that becomes very
important when your programs get longer and more complicated.

REPEAT ... UNTIL YOU GET TIRED

We've already given you a sneak preview of the words REPEAT
... UNTIL. Now, we’ll give you the details.

REPEAT ... UNTIL is just another loop. It differs from LOOP
... ENDLOOP because it contains a built-in test that tells it when to
stop. It makes this test at the bottom of each pass. If the expression
tested evaluates as TRUE, the loop is exited.

Here’s the important thing to remember about a REPEAT ...
UNTIL loop. It always executes the statements within the loop at least
once because the test always takes place at the bottom of the loop.

Let’s study an example.

PROCEDURE factoriali

0000 (* Compute Factorial: number! *)
0022

0023 DIM temp,number:REAL

002E

002F temp:=1

0037 INPUT ""What number would you like the factorial of? '‘,number
006C

006D REPEAT

006F temp: =temp*number

007B number: = number-1

0087 UNTIL number< =1

0093 PRINT ""The factorial is ’; temp
00AC

00AD END

The procedure ‘factorial1’ computes the factorial of a number.
It uses a REPEAT ... UNTIL loop to multiply a temporary number by
the value stored in the variable ‘‘number’’. Each time it goes through
the loop it sets a temporary number equal to itself times “‘number’’.
Then, it subtracts one from the value of “‘number’’.

When “number’’ becomes less than or equal to one, the loop

is exited and the value of the number is printed. This number is the
factorial of the number you typed.

92

You can also compute the value of a factorial of a number with
a FOR ... NEXT loop. We'll try that next.

LET’S LOOP FOR AWHILE NEXT WEEK!

The FOR ... NEXT loop executes a series of statements an exact
number of times. Study the procedure factorial.

FACTORIAL
PROCEDURE factorial
0000
0001 PARAM number:INTEGER
0008
0009 DIM counter:INTEGER
0010 DIM factoriai:REAL
0017
0018 factorial: =1
0020
0021 FOR counter=1 TO number
0032 factorial: = factorial* counter
003F NEXT counter
004A
004B PRINT counter-1,factorial
0057
0058 END

When you run the procedure factorial, you must tell BASIC09
the number you want to compute the factorial of. You do this when
you type the RUN command. For example:

RUN factorial(5)

This line, typed as a command line while in BASIC09’s system
mode, or entered as a statement in another procedure, tells BASIC09
to compute the factorial of the number five and print it on your terminal.

The number you type in parentheses is a parameter. You'll learn
about parameters in Chapter 12. For now, we’ll concentrate on the
FOR ... NEXT loop.

Each time the procedure factorial runs through the loop, the line
between the FOR and NEXT statements is executed. When the
counter equals five — the value typed in the RUN command — loop-
ing stops and the procedure executes the line following the NEXT
statement where it prints the result.

In the procedure factorial, BASIC09 automatically increases the
loop counter by one each time through the loop. It's also possible
to select the size of the counter’s increase by using the word STEP.
For example, if you want to count nickels:

93

PROCEDURE countbyfive

DIM cents,nickel:INTEGER

FOR nickel : = 1 to 20 STEP 5
PRINT “nickel number ‘’; nickel
PRINT nickel*5; "' cents”’

NEXT nickel

PRINT “We now have a dollar!’’
END

What happens when you need to count backwards? And maybe
you would like to ring the bell on your terminal when you go broke.

Let’s rewrite the procedure.

PROCEDURE broke

0000

0001 DIM cents,nickel:INTEGER

000C

000D bell: =7

0015

0016 FOR nickel: =20 TO 0 STEP -5

002C PRINT nickel; *’ nickels: “;

003F PRINT nickel*5; “ cents”’

0050 NEXT nickel

005B

005C PRINT CHR$(bell)

0063 PRINT “"Whoops! We’re broke!”’
007C

007D END

Use the two procedures above to study the FOR ... NEXT con-
struct. Change the procedures to make them do different things within
the loop. Then, change the amount the loop count increases or
decreases each time through the loop by altering the STEP value.

When you feel like you have FOR ... NEXT loops under control,

take another big step. Rewrite one of the procedures and try to do
the same thing using a REPEAT ... UNTIL loop construct. Be brave.

WHILE YOU’RE STILL LEARNING, LET’S DO IT AGAIN

The WHILE ... DO ... ENDWHILE loop is another powerful
BASICO09 construct. It’s similar to the REPEAT ... UNTIL loop we
studied earlier — with one significant change.

The WHILE ... DO loop always makes its test at the top of the

loop. It’s possible that your loop may never be executed. Consider
this procedure:

94

PROCEDURE shallweprint
firstnumber : = 100
secondnumber : = 10
WHILE firstnumber < secondnumber DO
PRINT firstnumber
firstnumber : = firsthumber +1
ENDWHILE

END

If you run this procedure, nothing will be printed on your terminal.
Do you understand why? Let’'s make a quick pass through the
procedure.

In the first two lines, the variable “‘firstnumber’’ is assigned a
value of 100, and “‘secondnumber’ is assigned to a value of 10. Next,
the WHILE ... DO statement asks BASICO9 to evaluate the expression
“firstnumber x secondnumber’’.

It is really evaluating “100 x 10’’. Since this expression has
a BOOLEAN value of FALSE, BASIC09 never executes the loop.
Rather, it immediately skips to the line following the ENDWHILE state-
ment which is the END of the procedure.

Here’s another procedure that uses the WHILE ... DO loop. |t
uses a variable of type BOOLEAN to determine if your cursor has
passed column number 50. When it does, the value of ‘‘yes” becomes
FALSE and the loop is exited.

PROCEDURE positiontest
DIM yes:BOOLEAN
yes := TRUE
WHILE yes DO

PRINT “OK “;

yes := POS x 50
ENDWHILE
END

Here’s a tip. If you really want to understand what is going on
inside a loop, add a BREAK statement in the first line of these short

example procedures. Then, use the debugger to STEP through the
procedure with the TRACE ON.

Here’s one more for the road — a short procedure that reverses
the characters in a word using a WHILE ... DO loop.

PROCEDURE reverseletters
DIM backward,word:STRING

backward := "’
INPUT word

95

WHILE LEN(word) > 0 DO
backward : = backward + RIGHT$(word,1)
word : = LEFT$(word,LEN(word)-1)
ENDWHILE

word : = backward
PRINT word
END

IF YOU CAN THINK, THEN MAKE A DECISION

You can let BASIC09 decide the flow of a procedure by using
the IF ... THEN ... ENDIF statement. IF the condition you are testing
is TRUE, the procedure executes one set of statements — IF it is
FALSE, it executes another.

Whenever you see an IF, you’il also see one of the BOOLEAN
comparison operators we introduced in Chapter Eight. If you aren’t
familiar with these symbols and what they mean, take the time now
for a quick review.

We'll show you a sample program line here for the sake of com-
pleteness. Then, | hope you forget that you ever saw it.

IF mynumber < yournumber THEN 200

Read in English, it means, “if the expression ‘mynumber < your-
number’ is true then GOTO line 200 and execute it.”’ This example
is the classic form of the IF ... THEN construct and in older BASICs
it was almost the only form you ever saw.

Fortunately, BASICO9 is highly structured and does not make
you use line numbers. In fact, you should avoid using them whenever
possible. They just take up memory and slow down your program’s
execution. Let’s look at the power of BASIC09's IF ... THEN ... ELSE
... ENDIF statements now.

POWERS
PROCEDURE powers
0000
0001 (* Procedure Demonstrates nexted "If-Then-(Else)-Endif’’ construct *)
0045 (* Takes input value to given power *)
006B
006C DIM value,result:REAL
0077 DIM power:INTEGER
007E
007F PRINT
0081 PRINT ""This program prints the powers of real numbers. "’
00B4 PRINT “Maximum power =4; Type a ‘0’ for power to quit.”’
00E6

96

00E7 LOOP

00E9

00EA PRINT

00EC INPUT "“"Type a number here: "“,value
0108 INPUT "“"Which power would you like to see? "“,power
0133 PRINT

0135

0136 EXITIF power=0 THEN

0142 PRINT “"Nice working for you — bye!”
0162 PRINT

0164 ENDEXIT

0168

0169 IF power=1 THEN

0175 result = value

017D ELSE

0181 IF power=2 THEN

018D result = value *value

0199 ELSE

019D IF power =3 THEN

01A9 result = value *value *value
01B9 ELSE

01BD IF power=4 THEN

01C9 result = value*value*value *value
01DD ELSE

01E1 PRINT “lllegal value!!!”’
01F5 result=0

01FD ENDIF

O1FF ENDIF

0201 ENDIF

0203 ENDIF

0205

0206 PRINT result

020B

020C ENDLOOP

0210

0211 END

The procedure, powers, illustrates BASIC09's powerful IF ...
THEN ... ELSE ... ENDIF construct. The programmer’s logic is clear
because of the indented listing. But more importantly, this structure
lets you write most programs without line numbers.

For those of you who have programmed before; yes there is a
way to do this without all the IF ... THEN statements, but this pro-
cedure demonstrates the nesting of IF ... THEN statements and shows
how BASIC09 automatically indents your program lines to enhance
readability.

Since IF statements can be nested to any depth, extremely com-
plex choices can be made. The procedure powers can make a five-
way branch. The flow is determined by your answer to the prompt,
“Which power would you like to see?”” Even more complicated

97

choices and decisions are possible. The only limit is the program-
mer’s imagination. Here’s another procedure that uses the IF ...
THEN ... ELSE ... ENDIF construct.

PROCEDURE realtionship__test

0000
0001

000C
000D
0014
001B
001C
0029
0050
0054
0055
0062
0083
0087
00B1
00B3
ooB5
00B6

GOSUB CALLS A BASIC09 SUBROUTINE

DIM number,another_ number:INTEGER

number: =6
another__number:=8

IF number <another__number THEN
PRINT "Number is less than another__number.’’
ELSE

IF number = another__number THEN
PRINT "Number equals another__number.”
ELSE
PRINT “"Number is greater than another__number.’”’
ENDIF
ENDIF

END

Let’s follow the execution of the procedure Relationship__test.
First, the BOOLEAN expression ‘“‘number x another__number’ is
evaluated. Since the result is TRUE, BASIC09 immediately executes
the statement between the word THEN and the word ELSE and prints
the message, ‘‘Number is less than another__number.”

Remember, when the word ELSE is not used, all statements
between the word THEN and the word ENDIF are executed.

Had the BOOLEAN expression above evaluated as FALSE, the
procedure flow would have followed a different course. If the variable
number had been assigned a value equal to the value of
another__number, BASIC09 would have printed the message,
“Number is equal to another__number.”

Run this procedure several times using different values for
“number” and ‘‘another__number’’. Remember to add the word
BREAK so that you can use BASIC09’s debugger with the TRACE
ON to see what is going on.

Subroutines can be very handy and save you a lot of typing.

A subroutine is an isolated part of your program which performs
a specific function and then returns control to the main body of your
program. In BASIC09, you execute a subroutine with the word
GOSUB. To return to the main body of your procedure, you use the
word RETURN.

98

There’s a catch though. You must put a line number in front of
the first line of your subroutine. In this case you must violate our
informal rule that told you not to use line numbers. We’'ll let you get
by with it this time!

Here’'s a short procedure that uses a subroutine to divide a
number by two and print the result. The main body of the procedure
calls the subroutine 20 times — 10 times to print half of the sine of
a number and 10 to print half the cosine of another number.

PROCEDURE useagosub

0000

0001 DIM result:REAL

0008 DIM number:INTEGER
000F

0010 FOR number:=1 TO 10
0020 result: = SIN(number)
002A GOSUB 100

002E NEXT number

0039

003A FOR number:=1 TO 10
004A result: = COS(number)
0054 GOSUB 100

0058 NEXT number

0063

0064 STOP

0066

0067 100 result: =result/2
0076 PRINT result

007B RETURN

007D

007E END

This procedure will give you another chance to use BASIC09’s
debugger and its tracing ability to study the flow of a procedure.

ON ... GOSUB: When You Need More Variety

Another form of the GOSUB statement evaluates an expression
and uses the result to determine the line number of your subroutine.
It takes the form:

ON xray GOSUB 1000,2000,3000

In this case xray must be of the type INTEGER and have a value
between 1 and 3. If xray evaluates as 1, the procedure calls the
subroutine located at line 1000. If it evaluates as 2, the procedure
calls a subroutine at line 2000. And finally, if it is 3, the subroutine
at line 3000 is called.

There is one additional rule you should follow when using this
construct. The value of xray should never be greater than the number

99

of line numbers supplied in the list following the word GOSUB. For
example, if you somehow make a mistake and a value of 4 is assigned
to xray, your procedure will not call a subroutine. Rather, it will execute
the next statement in your procedure.

BASIC09’s ON ... GOSUB structure is similar to that of the Pascal
word CASE and is very handy in certain situations.

Here’'s an example that shows you how to deal with the seven
days in a week. Imagine that you have written a procedure to compute
the day of the week. Your procedure probably will give you a result
that is a number. For example, Sunday would be day number 1;
Monday, number 2 ... Saturday, number 7.

Here’s the problem. People think of the days in a week in terms
of Sunday ... Saturday, notinterms of 1 ... 7. How can you humanize
your report.

You could use the classic IF ... THEN ... ELSE structure that
we showed you earlier to print an English language message.
Unfortunately, the procedure would become extremely cumbersome
after two or three days. Let’s look!

IF DAY =1 THEN
PRINT "Sunday”’
ELSE
IF DAY =2 THEN
PRINT “"Monday"’
ELSE
IF DAY =3 THEN
PRINT "“Tuesday”
ELSE
(* Etc. *)

Imagine what this procedure would look like by the time you got
around to Saturday. Granted, BASICO09’s pretty-printing will make it
easier to read but let’s look for an alternative.

In PASCAL the procedure above would ook like this:

CASE day OF
1: WRITE (""Sunday’’);
2: WRITE (“Monday”’);
3: WRITE (""Tuesday’’);
(* Ete. *)
This procedure is much easier to read and understand. Now
here’s the good news. With BASIC09’s ON ... GOSUB control
structure you can do the same thing.

PROCEDURE dayofweek
DIM day:INTEGER

100

day : = 1+INT(RND(6))
ON day GOSUB 10,20,30,40,50,60,70
END

10 PRINT ““Sunday” / RETURN

20 PRINT ""Monday” / RETURN

30 PRINT "Tuesday’ / RETURN
40 PRINT "Wednesday '’ / RETURN
50 PRINT ""Thursday’’ / RETURN
60 PRINT “‘Friday’’ / RETURN

70 PRINT ""Saturday’’ / RETURN

ON ... GOTO is a similar control structure. The difference
between the two shows up after the line is executed.

In the case of ON ... GOSUB, control always returns to the line
following the construct.

When an ON ... GOTO statement is executed, control is
transferred to the appropriate line number forever. It never RETURNS.
Since serious problems can be created, good programmers avoid any
use of the verb GOTO unless they have a very good reason.

GOTO: USE IT SPARINGLY

There comes a time in the life of every programmer when he must
use a GOTO statement. Perhaps the flow of control needed to solve
the problem is too irregular to be expressed in terms of the other control
structures.

Just remember, the GOTO statement unconditionally transfers
the control of your program to the line having the specified number.
By the way, in BASICO09 the line number must be a constant. You
may not use a variable or expression to represent it.

One of the most important criterion in programming style is
whether or not the program can be understood by other readers. This
criterion means that even though GOTO statements should be
avoided, they are acceptable in exceptional cases where they let you
avoid an awkward expression that is hard to understand.

One place where you may need to use a GOTO statement is in
a procedure that must read data into a complex data type. You must
always make sure that your procedure checks data and issues an
appropriate error message to the operator.

But, what happens when you detect a data entry error that would
totally confuse later procedures and cause erroneous answers?

The answer is simple — use a GOTO statement to jump out of
the control loop your procedure is executing when the error occurs.

101

ON ERROR GOTO LETS YOU EXIT GRACEFULLY

Sooner or later, it will happen to you. You'll make a mistake when
you define your algorithm and your procedure will generate an error.
What then?

Normally, BASIC09 terminates your procedure and enters the
DEBUG mode, which is fine for testing, but your face will sure be red
when it happens to someone else that is trying to run your program.
What can you do to avoid this potentially embarrassing situation?

Enter our latest hero — the ON ERROR GOTO statement. This
statement “traps’’ any errors that occur and doesn’t let BASICO9 enter
the debug mode. Instead, it transfers control to a line number
containing an error handling routine.

When you write your error handling routine, you'll most likely
discover yourself using the ERR function. This BASIC09 word returns
a number that represents a specific error. The number can be looked
up in the BASICO09 reference manual where an English language
description of each error is listed by number.

To use the function ERR, you assign its value to a variable. You
must do this because ERR resets itself to a value of zero after it is
called. Here’s a short example:

PROCEDURE traperrordemo

DIM path,errnum: INTEGER
DIM name: STRING[45]
DIM line: STRING[80]

ON ERROR GOTO 10

INPUT “‘Filename? ‘‘; name
OPEN #path, line
LOOP
READ #path, line
PRINT line
ENDLOOP

10 errnum : = ERR
IF errnum = 211 THEN
(* end of file error *)
PRINT “‘Listing Complete.”
CLOSE #path
ELSE (* report other errors *)
PRINT ‘Error Number ’’; errnum
ENDIF
END

The main procedure above simply opens the file that you select
and lists it on your terminal, a line at a time. It does this until an error
oCCurs.

102

Since you always receive an ‘‘end-of-file’’ error if you try to read
past the end of a file, you planned ahead to trap this error with the
routine beginning at line 10.

Line 10 checks to see if the error generated actually was an end-
of-file error. If it was, it closes the file and exits the procedure. If not,
it reports the error and exits.

Let’'s drop one more word on you here. Then, we’ll exit this
chapter. Sometimes it is handy to be able to generate errors on pur-
pose. How else are you going to check your error handling routines.

To check error handling you may use the BASIC09 word, ER-
ROR. This statement will generate an error with the error code that
you specify. It looks like this:

ERROR(211) (* generates end of file error *)
ERROR(x-y) (* generates error code equal to the *)
(* value of the expression ""x-y’’ *)

You should feel like you have control of BASIC09 by now. In
this chapter, you have been introduced to a group of constructs that
give you control of your program’s structure.

By controlling structure, you control the flow of your program and
come closer to guaranteeing that you will compute the correct answer,
which should be your ultimate goal.

By controlling your program’s structure, you are also making your
program easy to read and understand. A complete stranger should
be able to understand it after a quick reading. Besides, you may be
called in to make a change a year or two after you write a program.
What are you going to do if you can’t read your own code? Remember,
forewarned is forearmed.

In Chapter 10 we’ll move on down the road and show how your
programs can communicate with the rest of the world. We’ll introduce
you to files and show you how to store data on semi-permanent
magnetic storage devices. Your data will no longer disappear when
you turn off the computer.

103

SUMMARY

104

CHAPTER TEN

talking to the outside world
T

So far, we've only worked with data stored in your computer’s
memory or data sent and received from your terminal. We’ve shown
you how to define data types and reserve memory space. We've
shown how you can use your data in mathematical expressions and
how to list the results to your terminal. Now, we’re ready to expand
your horizons.

First, you'll learn how to store large amounts of DATA internally
and READ it into variables for computation. Then, we’ll move out-
side your computer and introduce you to devices and files. In fact,
we'll show you how devices and files look the same to BASIC09
because of the unique Input/Output structure of the advanced 0S-9
operating environment it lives in.

You'll learn the meaning of these BASIC09 statements:

CLOSE CREATE DATA DELETE
GET INPUT OPEN PRINT
PUT READ RESTORE SEEK
SIZE WRITE

READING AND STORING INTERNAL DATA

Getting your data from the terminal’s keyboard is ok when you'’re
dealing with a small amount of information. But, how would you like
to enter the name of every player on a baseball team — every time
you compute batting averages?

105

This is a good place for you to use BASIC09’s internal DATA
storage. In fact, DATA statements containing the names of a baseball
team might look like this:

DATA ""Powers’,’"Jones’’,’Puckett’’
DATA '‘Cobb"’,”’Robinson’’,”"Bench’’
100 DATA “Garvey’’, 'Brock’’,"Jackson”’

Before you can use this DATA, you must READ it into an array.
Here’s a procedure that both READs and PRINTSs it.

PROCEDURE readplayernames
DIM player(9):STRING[15]
DIM count:INTEGER

DATA ""Powers’’,””Jones”’, "Puckett’’
DATA ""Cobb’’,”’Robinson’’,’’Bench”’
100 DATA "'Garvey’’,’’Brock’’,’’Jackson’’

FOR count:= 1t0 9
READ player(count)
PRINT player(count)

NEXT count

You should understand several things about DATA and
READ statements before you use them. First, BASIC09 evaluates
each expression as it READs it from the DATA list. The resulting
value may be of any TYPE. However, the variable that stores the
DATA must be of the same TYPE.

Secondly, you must supply a list of variables to store informa-
tion read from the DATA list. In our example, DATA is READ from
the list and stored in an array. Powers, the first name in the list, is
stored in the first element of the array, player(1); Jones, the second
name, is stored in player(2), etc.

After all expressions in a DATA statement have been READ,
BASICO09 reads from the next DATA statement. When all DATA
statements in a procedure have been used, the next READ statement
goes back to the first DATA statement and starts through the list again.

But what happens when you need to backtrack and READ a
specific part of the DATA list again? No problem, just use the
RESTORE statement. It takes two forms:

RESTORE

RESTORE 100

Stop for a moment and see if you can figure out what would hap-
pen if you applied these statements to the DATA in the procedure
readplayernames.

106

That’s right, a READ statement following the first line would read
the name ‘“‘Powers’’. When a RESTORE statement has no line
number, the next value is read from the first DATA statement in the
procedure.

Which name do you think would be read by a READ statement
following the second RESTORE statement?

If you said, ““Garvey’’, you're right. A RESTORE statement with
a line number causes the next value read to come from a DATA state-
ment with that line number.

ALL ABOUT PATHS AND FILES

A file is a sequence of data that has been stored for future use.
With BASICO09, data can be of any TYPE — the file system doesn’t
care.

Some files store ASCII text, some hold binary numbers, and
others store special codes designed by the programmer. Again, the
file system doesn’t care. ?

Printer Disk File Disk File

A terminal, modem, and disk file all look the same to BASIC09.
They all send and receive data, one character at a time — through
a data path.

Paths are data channels used by BASIC09 to tell the OS-9
operating system which device driver to use when sending or receiv-
ing your information. A device driver is a piece of software that lets
0S-9 talk to a piece of hardware. The name of a path is often the
name of a device descriptor that tells OS-9 which device driver to use.

For example, most OS-9 systems use a device descriptor nam-
ed /p to send data to a printer. This descriptor tells OS-9 to use a
device driver named PIA and gives it the address of the hardware.
Another device descriptor named /t1 talks to a second terminal. |t PATHS
points to a device driver named ACIA.

Program

Even disk drives have device descriptors. /D0 is a common name
for the first drive in a system.

Disk drives read data from a magnetic material on a floppy disk.
The name and location of each file on the disk is stored in a direc-
tory. When you want to read data from a file on a disk, you give
BASICO09 a pathlist which contains the device name, a directory name,
and a file name. For example:

SHELL “list /d1/BOOK/Chapter__10"’
SHELL "list Chapter__10"

In the first example we use the BASIC09 SHELL statement to

give OS-9 everything it needs to know about the file we want to list.
We name a drive, /d1; a directory on that device named BOOK; and

107

a file in that directory named Chapter__10. In the second example,
we assume that the file Chapter___10 is stored in the current data
directory.

If filenames, pathlists and data directories are still a bit hazy, now
would be a good time for you to review our introduction to OS-9 in
Chapter Three. You’ll soon be back on the right track.

With the OS-9 operating system, your imagination is the only limit.
By redirecting the standard input and output paths, you can test a
terminal input routine with a disk file. Or, you can look for errors in
a disk file procedure by typing in characters from the keyboard.

But for now, let’s keep it simple and use the standard input and

output paths to INPUT data from your keyboard and PRINT it on your
terminal.

INPUTTING DATA FROM YOUR TERMINAL

Sometimes, you need to pass some information to your computer
while it is running a program. How do you do it?

The first thing you must do is let the operator know that the pro-
gram needs some information by using a prompt.

After your program prints a prompt, it must stop and wait for an
answer. You tell it to wait by using an INPUT statement. In fact,
BASICO09 lets you kill two birds with one stone. You can issue the
prompt and get the information with one statement.

For example, suppose that you are writing a program for a
medical clinic. Each time a new patient visits, the doctor wants the
patient’s name added to a file. Here’s a statement that will ask the
operator for the patient’s name and INPUT it into your program:

INPUT ““What is the patient’s name? ', name$

At other times you may be dealing with operators who know how
to use a computer. Often — especially when they must run the same
program many times a day — they don’t want to be slowed down by
prompts. To keep them happy, you can use the simplest form of the
INPUT statement. Be aware that the practice of not using prompts
is a bad habit and if they forget what the program wants, they may
wind up a victim of this shortcut.

INPUT number, points

When you use the INPUT statement above, your computer will
not print an English language prompt. Instead, it will print a ques-
tion mark, “?”’. When you see the question mark you can be sure
that your computer wants some information. But, it will be up to you
to remember what it wants.

108

You may want to have your program get its information from
another terminal. To do this, you OPEN a path to that terminal
and use the new path number in your INPUT statement.

OPEN #newterminal, '/t1':UPDATE
INPUT #newterminal, number, points

We’ll describe the OPEN statement in detail later in this
chapter. For now, we have one more point to consider. Did you ever
wonder what happens to data after you INPUT it?

Data read into BASIC09 with the INPUT statement is handled
like data READ from an internal DATA statement. The data you type
on the keyboard is assigned to variable names in your input list in
the order the names appear.

When entering data, you must type all requested variables —
separated by commas — and then type < RETURN>. If you make
a mistake, this message will appear.

INPUT ERROR—RETYPE

If you see this message, you must re-type the entire line. Don’t
get too upset. Here’s a tip that will make life easier.

BASICO09 uses OS-9’s line INPUT statement which means that
if you make a mistake, you may edit the line — up until the time that
you hit the carriage return.

You may backspace to correct your error, delete the entire line,
repeat an entire line, or send an end-of-file character. Now would be
a good time to review the line editing features we introduced in Chapter
Two.

PRINTING DATA ON YOUR TERMINAL OR PRINTER

Since PRINT is one of the best known verbs in the BASIC
language, we won’t dally here too long.

The PRINT statement sends the value of each item in an output
list to the standard output device. Nine times out of 10, the standard
output device will be your terminal. You may however, send
information to an alternate device by inserting a path number in your
PRINT statement.

Here are the rules. Items in your output list must be separated
by a comma or a semicolon.

If you use a comma, each item is aligned in a tab zone, which

means an item will be printed every 16 columns across the screen.
The first item will start at the left-hand side of the screen, the second

109

begins at column 16, the third at column 32, the fourth at column 48,
and the fifth at column 64. Try this!

FOR number := 1 to 12
PRINT number,
NEXT number

Your screen should ook like this:

oo~

2. 3.
6. 7.
10 11.

Now, change the comma to a semicolon and see what happens.
You should see something like this:

1.2.3.4.5.6.7.8.9.10.11.12.

When you use a semicolon in a PRINT statement, all of your data
will run together — there will be absolutely no spacing between items.
Also, if you put a semicolon after the last item in a list, the carriage
return will be inhibited and the cursor will stay on the same line. You’ll
use this trick often.

If you are only PRINTing one item and you do not use a comma
or a semicolon, BASIC09 sends a carriage return after it prints the
item. The cursor will be moved to the next line on the screen. Omitting
the comma or semicolon after the last item in a list has the same affect.

Here are some more examples:

PRINT location, time, temp
PRINT name, address, zip
PRINT name; '’ '; address; ‘’; zip

The first example PRINTSs three numeric variables. The number
of the location computed should appear at the left edge of your screen,
the time in column 16, and the temperature in column 32.

The second example prints two variables of type STRING and
one of type REAL. You expect them to be printed at the left edge
of the screen, at column 16 and column 32 respectively. But, what
happens if the strings are longer than 16 characters?

If “name’”’ is longer than 16 characters, it extends into the se-
cond zone, and ‘‘address’’ is printed at column 32 instead of column
16. The same is true with ‘‘address’ — if it is longer than 16
characters, “‘zip’’ will be print in the next tab zone.

110

The final example prints the same information using semicolons.
We used two quote symbols, “’, to print a space between the items
so ‘“‘name’ and ‘‘address’’ would have a space between them.

A character or characters enclosed in quotation marks is treated
as a string constant. String constants are also known as a literal
strings. Essentially, what you see is what you PRINT. Try it!

PRINT “This is sure easy!”’

Professional presentations are the result of paying close atten-
tion to PRINT formatting. BASICO9 has several powerful statements
— including TAB, POS, and PRINT USING — to give you the addi-
tional control needed. We’'ll cover them in detail in the Chapter 11.

TWO TYPES OF FILES — RANDOM AND SEQUENTIAL

BASICO09 uses two types of files: sequential and random-access.

Sequential files hold records. Records, hold ASCII characters.
There can be any number of characters in a record and any number
of records in a file — as long as they will fit on the disk.

It is easy to picture a record if you think of it as a line of text.
The character that most often marks the end of a record is a carriage
return.

To put a record in a sequential file, you use a WRITE statement.
It sends each character in your record to the file and then sends a
carriage return. To get information out of a sequential file, you READ
it. The READ statement reads characters from a file until it finds a
carriage return.

Random access files work differently. They hold a mirror image
of BASICO09 data. Data written to a disk file looks just like the same
data in memory. There are no carriage returns to indicate the end
of a record.

Since information doesn’t have to be converted to ASCIl before
itis written to a random access file, operation is very fast. The same
is true when the data is read from a disk.

To store data in a random access file, you use BASIC09’s PUT
statement. To retrieve it, you use the GET statement.

SEEK and SIZE statements help you PUT your record in the right
place in a random access file. They also help you GET the proper
record from a file.

SEEK points to a specific character in a file. For example,

""SEEK 0" points to the first character in a file, “SEEK 100"’ to the
100th, etc.

111

SEQUENTIAL
FILE

NOW IS THE TIME FOR AL

FILE

LET’S CREATE A FILE

LET’S OPEN A FILE

SIZE tells you the size of a data element and gives you a way
to calculate the position of any record in a file.

Before you can WRITE, READ, PUT, GET, SEEK, or SIZE a
disk FILE — you must CREATE IT.

To create a new file on your disk, you use the CREATE statement.
CREATE #draft, '‘/d1/worktext/draft’:WRITE

This statement creates a file named “‘draft’’ in a directory named
worktext on the disk you have loaded in drive, /d1. The path number
assigned to the file is stored in the variable “draft’’. Later, you will
use the name ‘‘draft’” when writing to the file. The variable holding
the path number must always be of type BYTE or INTEGER.

The WRITE following the name of the file tells BASIC0S what
you are going to do with the file. If you use the statement above, you
will not be able to read from the path, “draft’’. You may only WRITE
to it.

There are three access modes you may use when you CREATE
BASICO09 files.

WRITE UPDATE EXEC
You can create a file for WRITE only as you did above.

You can create a file in the UPDATE mode when you need to
both READ and WRITE.

And, if you need to store machine langauge code that will be
executed, you can use the EXEC mode. This mode is very rarely used
except by expert Basic09 gurus.

Both sequential and random access files are CREATED the same
way. They look exactly the same on the disk. When afile is created
it has a length of zero. As you WRITE to the file, it expands auto-
matically.

Although there is probably no good reason for you to do it, you
may also CREATE a file on a device — /t1 for example — without
causing an error. BASICO09 will treat the CREATE statement like an
OPEN statement.

If a file already exists you can skip the CREATE statement. You
must, however, OPEN a path to a file before you can use it. Here’s
one way to OPEN a path and send a message to your printer.

112

DIM print__path:BYTE
DIM name:STRING[2]

name := “ip”’

OPEN #print__path,name:WRITE
PRINT #print__path, "The Quick Brown Fox Jumped ... ”’
CLOSE #print__path

You should know several things about the OPEN statement. First,
the variable holding the path number — print__path in our example
— must be of type BYTE or INTEGER. And, you have more access
modes available to you when you OPEN a file than when you CREATE
one.

READ WRITE UPDATE EXEC DIR

READ lets you read from the file, WRITE lets you write to it, and
UPDATE lets you either READ or WRITE. In fact, if you do not select
an access mode when you OPEN a file, BASICO0S uses the UPDATE
mode automaticaily.

You can combine these access codes using a + as shown below:

OPEN #dirpath,dirname:READ + DIR

Note that READ + WRITE is the same as UPDATE. You can similarly
combine legal access codes in CREATE statements.

if you OPEN a file using the EXEC mode, BASICO09 stores or
looks for your file in the current execution directory. BASIC09 uses
the current data directory for all other modes.

The DIR mode OPENSs a directory for READ. BASICO09 will not
let you OPEN a directory file in the WRITE or UPDATE modes, and,
if you try it, BASICO09 will print an error message. |f BASICO9 did let
you do this, the damage you would do to your disks just testing your
programs would make you cry!

LET’S WRITE TO OUR FILE

The WRITE statement should look very familiar. In fact, it’s
almost like the PRINT statement. Here’s the difference.

When using the WRITE statement, you must use a path number.
With the PRINT statement, the path number was optional. You must
always use commas to separate items in your data list when using
WRITE.

WRITE #printer__path, lastname$; ", *’; firstname$
WRITE #1, LEFTS$(firstname$,1); . ’’; lastname$

113

The first statement WRITEs a lastname, a comma, a space, and
a firstname to your printer. The name written is the one you stored
earlier in the variables named lastname$ and firstname$.

The second example sends the first letter of the name held by
firstname$, a period, a space, and the name held by lastname$ to
the standard output device — usually your terminal.

Here are some additional things you should know about WRITE.
This statement always sends data to a file in ASCIi character format.
The path number is usually determined when the file is OPENed or
CREATEd and is stored in the BYTE or INTEGER variable you named
then.

Again, when you type the data list in a WRITE statement you
must separate the items with commas. Items are written one after
the other. When you are writing more than one item in a record,
BASICO09 places a null — a character with a value of 0 — between
items.

Expressions in your list may evaluate to any data TYPE.
However, BASICO9 converts them to ASCII before writing them to
your file.

Records created with WRITE statements vary in length. If you
WRITE a single character to a record, that record will only be one
byte long. If you WRITE a STRING 32 characters long to a record,
the record will be 32 bytes long, etc.

There’s one more thing you need to know. 0OS-9 keeps a file
pointer in memory that tells it where to find the next character in a
file. This pointer is updated automatically every time data is written.
When you use a WRITE statement, BASIC09 always starts writing
at the location of the pointer.

Once you have written a record to a file, you are home free. You
can READ it back anytime you need it. Let’'s move on.

READING OUR RECORDS

Sometime after you have written data to a disk file, you're going
to need to use it. To get it back in the computer, you use the READ
statement? Let’s jump right into some examples.

READ #myfile,name$,address$,city$,state$,zip

PRINT #1, "Height, Weight? *
READ #0, height, weight

The first statement READs five items from a record pointed to

by a path named ““myfile”’. It‘-READs one item at a time and stores
it in the appropriate variable.

114

Always remember, once you have written a number of data items
to a file in a certain order, you must READ them back in the same
order.

The second example shows how to READ data from your
terminal. Instead of using the name of a variable for the path number,
we typed #0. By using #0, BASIC09 knows to READ the data from
the standard input device — usually the keyboard on your terminal.

As you would expect, the READ statement is the exact opposite
of the WRITE statement. It’s operation is identical.

For example, a READ also begins at the current location of the
file pointer. The file pointer is updated as the data is read. Sure
sounds familiar!

Again, the path number is usually held in a variable initialized
earlier by an OPEN or CREATE statement. READ works with files
OPENed for READ or UPDATE.

ltems from a record are stored in the variables listed after the
path number in the READ statement. They are stored in the order
read.

READ expects STRINGs in a record to be separated by a null
character. However, numeric data may also be separated with a
comma or space. READ expects a carriage return at the end of each
record.

READ and WRITE were designed to work together. Everything
READ expects, WRITE does. The moral of the story — when you
plan to get data from a file with a READ statement, make sure you
put it there with a WRITE statement.

DON’T FORGET TO CLOSE YOUR FILE

What'’s that old saying? The job isn’t done until the paperwork
is complete.

There’s a parallel in programming. You aren’t through with a
file until you CLOSE it.

Granted, BASICQ9 is pretty forgiving. Most of the time it CLOSEs
your files for you if you forget, leaving files OPEN is a very bad habit.
it ties up memory that can be used elsewhere, and if you forget to
CLOSE the path to a non-sharable device — a printer or modem for
example — you are keeping another person from using it.

Besides, the syntax is simple. Very little effort is required.

115

CLOSE #masterfile,#myfile,#yourfile

The line above hardly requires an explanation. It closes the three
files OPENed on the path numbers named.

It's a good idea not to CLOSE the standard input, output and
error paths (#0, #1, and #2). However there’s nothing to stop you,
when you have a good reason.

For example, if you want to redirect the standard output path from
your terminal to your modem, you could use these two lines. The
following example is somewhat dangerous because if an error occurs,
BASIC09 would try and communicate with you via the modem!

CLOSE #1
OPEN #path, “/modem "’

There’s only one catch to the CLOSE operation — the path you
are closing must be OPEN. When you stop to think about it, that
makes sense. Let’s show you how to get rid of a file, then we’ll move
on to demonstrate the power of BASIC09’s random access files.

TO GET RID OF A FILE — DELETE IT

When you’re sure you’re ready to bid farewell to a file forever,
you can DELETE it.

DELETE is a simple command, but one that must be used with
caution. Once you DELETE a file, its name is removed from the direc-
tory, its storage deallocated, and its data lost forever.

You may use either a literal string or a string variable in your

DELETE statement, and you may use a computer pathlist or the
filename alone.

But remember, if you do not give BASIC09 the complete pathlist,
it will assume that your file is in the current working directory.

DELETE ’'/d1/worktext/Chapter__ 11"
filename$: = “myfile”’

DELETE filename$

DELETE “‘Id1/” + filename$

The first statement deletes a file named Chapter__11, located
in a directory named worktext on a disk installed in drive /d1.

The second uses a string variable to DELETE a file named myfile.
BASICO09 expects to find it in the current data directory.

The last example shows how you can add a string variable to
a literal string to create a pathlist for the DELETE statement.

116

Here’s one more thing you must remember. If you do not own
a file, you cannot DELETE it. In fact, you can’'t even WRITE to it.

If you're confused about file ownership, now would be a good
time to review the introduction to OS-9 operating system in Chapter
Three. Otherwise, we’ll move on to random access files.

WHEN YOU PUT DATA IN A FILE, YOU CAN GET IT FASTER

In this section you’ll be introduced to one of the most important
advantages of BASIC09 — the ability to GET and PUT any amount
of any TYPE of data in a single statement. In fact, we’ll present a
few program lines that show you how to GET an entire data structure
in two lines. That’s something you can’t do with too many BASICs
today.

If you’ve forgotten about the user defined data structures introduc-
ed in Chapter Seven, take the time now to review them. After you're
finished, you’ll appreciate the power we're unleashing even more.

Once you learn to combine BASIC09’s complex data structures
with its random access file statements, you’ll be amazed at the results.
Your procedures will be self-documenting. You’'ll be able to tell what
a procedure is doing — just by reading the code. The descriptive
names you give to your data elements make it easy.

Since BASIC09 PUTs data in a file in exactly the same form that
it stores it internally, the PUT statement operates fast. It doesn’t need
to stop and convert your data to and from ASCII like the sequential
READ and WRITE statements. Your programs will be much faster
and simpler than your neighbor’s.

And last but not least, you can GET and PUT data at any place
you specify in a file, not just sequentially as with READ and WRITE.
Being able to GET and PUT data in any order (called ‘“‘random ac-
cess”’) can vastly simplify and speed up data retrieval programs.

First, the rules. BASIC09's GET statement reads fixed-size
records from a file and stores them in a variable, array, or complex
data structure.

The PUT statement does just the opposite. It gets fixed size data
from a variable, array, or complex data structure and writes it to a file.

we’'ll review BASIC09’s data types here and show you what GET
and PUT will do with each. Let’s start with data of type BYTE — one
character.

When you GET a BYTE from a file, BASICO9 reads the character

pointed to by OS-9’s file pointer. PUT does just the opposite — it
writes one character to your file.

117

What do you suppose happens when we GET or PUT an IN-
TEGER. Did | hear you say it reads or writes two characters? You've
already got the ideal

When you GET or PUT a REAL, you are reading or writing five
bytes at a time. Likewise, when you GET or PUT a STRING, you
read or write the number of bytes you specified when you DIMen-
sioned the STRING.

Just like sequential files, random access files must be CREATEd
or OPENed before you can PUT data in them or GET data from them.
Also if you plan to GET data, you must OPEN the file in the READ
or UPDATE mode. Conversely, if you need to PUT data in afile, you
must OPEN it for WRITE or UPDATE.

You can PUT data in a file from only one variable, array, or data
structure at a time. Thus, it follows that you can only GET the data
for one variable, array, or data structure with each GET statement.

The big difference between GET/PUT and READ/WRITE lies
in the form in which they transfer their data to or from a file. Remember,
the WRITE statement converts your data — no matter what TYPE
—to ASCII before it sends it to a file. Because of this difference, the
READ statement must convert the data back from ASCII to the proper
TYPE before storing it.

Those are the basic rules for GET and PUT. Now, let’s unveil
their power. Since you can PUT an entire data structure into a file
with one statement, you save work and improve the readability of your
programs at the same time.

Pretend for a moment that you own an electronics parts com-
pany and you need to set up a file to handle your inventory. You need
to store the name of an item, its cost, its selling price, and the number
you have on hand.

Inventory Record

Item Cost Selling Number
Name Each Price on Hand
Widget 13¢ 29¢ 5,280

118

MAKEFILE
PROCEDURE makefile
TYPE inventory__item = name:STRING[25];list,cost:REAL; qty:INTEGER

DIM inventory__array(100):inventory _item
DIM work__record:inventory__item
DIM path,counter:BYTE

CREATE #path, "“inventory"”’
work__record.name :="""’
work_record.list : = 0.
work__record.cost : = 0.
work__record.qty := 0
FOR counter : = 1 to 100
PUT #path, work__record
NEXT counter
END

Let’s step through the example procedure a line at a time.

We start with one statement that defines a new data TYPE named
“inventory__item”’. This new data TYPE is made up of a STRING
containing 25 characters, a REAL variable holding the list price of
each item, another REAL variable holding the cost of the item, and
an INTEGER variable holding the quantity of the item in stock.

Next, we reserve space in memory with the DIM statement. Our
procedure reserves enough memory for two data structures — an array
large enough to hold 100 elements of TYPE “inventory__item’’ and
a “‘work__record”’ large enough to hold one “‘inventory _item”’.

After we reserve memory for our data, we CREATE a path to
a file named, ‘‘inventory’’.

Then, we initialize the file to a known value. The next several
lines do the initialization. First, a null STRING is stored in the name
field of the ‘‘work__record’’. Then, the list, cost, and quantity fields
of this record are set to a value of zero.

At this point, only the data fields in memory are initialized. We
must still PUT our initial data into each record in the file. A FOR ...
NEXT loop does the job.

Now that we have initialized our file, how do we GET our data
back to verify the fact that the file is initialized?

There are several ways to do it. Your first reaction would be to
use a FOR/NEXT loop to GET each record from the file and store

119

itin an array. That would work fine. But there’s a much easier way
to do it with BASICO9.

We can simply read in the entire structure, inventory__array, with
one statement. Try it!

SEEK #path,0
GET #path,inventory__array

SEEK positions OS-9’s file pointer. In the first line above, the
pointer is set to the beginning of the file. The effect is similar to the
RESTORE statement used with internal DATA.

The second line reads in the entire array with one statement. This
method is much easier than using a FOR ... NEXT loop and much
faster.

Now you know how to position the file pointer at the beginning
of your file. But what do you do if you need to GET the tenth record.
Enter another new word, SIZE.

SIZE is a BASICO09 function that returns the number of bytes of
memory reserved for a variable, array, or complex data structure. For
example, if you had DIMensioned a variable named “‘price’”’ as type
REAL, the call SIZE(price) would return a value of ‘5" since it takes
five bytes of memory to store a REAL number.

In the case of a REAL number you would have known the size
anyway. But, how about complex data — such as inventory__item
or inventory__array? Let’s look at the TYPE statement in the pro-
cedure, makefile, closely.

The ““name’ field requires 25 bytes. Then, add 10 bytes for the
two REAL numbers, list and cost, and two more for the INTEGER,
gty, and you have a total of 37. The size of an inventory__item, or
one record is 37. The size of the entire array of 100 inventory__items
would be 3700.

This time it wasn’t too hard to calculate the size of our record.
However, the more complex the data type, the longer it will take you
to calculate the size. The chance for error also increases. It’'s much
easier to type ""SIZE(inventory__item)”.

Back to our problem. To find the location of the tenth record or
inventory__item, we must calculate how many bytes we have used
to store the first nine records. If we were calculating the position by
hand we would multiply 37 times nine to give us 333. We would then
use the statement, “SEEK #path, 333"

The process described above could become a real drag if you

had to do it every time you needed a record. The easy way to solve
the problem is to use this statement:

120

SEEK #path, 9 * SIZE(inventory__item)

This statement calculates the position of the tenth record in the
file for you automatically. Here’s a more general statement that can
be used to find any item in the file:

SEEK #path, (item__number—1) * SIZE(inventory__item)

Once you have initialized your file, you will want to PUT infor-
mation in it. To do the PUT, you need only prompt for each item in
the record, use the SEEK statement to position the file pointer and
then PUT the record in the file. A sequence of statements like this
does the job.

INPUT “Item number? “,item__number
INPUT “Item name? ’‘,work _record.name
INPUT ““List price? ",work__record.list
INPUT ""Cost price? "“,work__record.cost
INPUT ""Quantity? "“,work__record.qty

SEEK #path, (item__number—1) * SIZE(work__record)
PUT #path,work__record

You're almost home free. When you add the BASIC09
statements you’ve learned in this chapter to those you already know,
you should be able to do just about anything.

In this chapter you've learned how to let your programs com-
municate with the outside world. You should know how to READ infor-
mation from internal DATA statements or your keyboard and how to
PRINT data on your screen and printer.

We've introduced you to sequential files and shown how to
CREATE, and OPEN them. We've shown how to WRITE data to files
and READ from them. And, we've shown you how to store complex
data structures with single GET and PUT statements and how to find
individual records in them with the SIZE and SEEK statements.

121

SUMMARY

122

CHAPTER ELEVEN

who says form follows
function

Hold on to your hats. We’ve got a fast track and your Mercedes
should make this short chapter in no time!

The debate concerning the rightful place of form and function
in the world is as old as man. We won’t try to sway you one way or
the other. But if you're the type that thinks function follows form, you’ll
love this chapter.

The commands you learn here will let you make your reports ook
good on the terminal’s screen or on the printed page. You'll be able
to format data till your hearts content. We’'ll introduce you to:

TAB POS PRINT USING

YOU CAN TAB TO ANY POSITION

BASIC09’s TAB statement gives you a way to PRINT your data
in columns. It causes the cursor head to move to the column you
name. For example,

PRINT "“Column #25"; TAB(25); ""* "’

This line will cause BASICO09 to PRINT Column #25 along your
terminal’s left hand margin and a star, ***”’, in column 25. Giveitatry.

If BASICO9 attempts to execute a TAB statement but finds that

the cursor or print head is already past the column position requested,
it simply ignores the TAB.

123

Here’s a bit of trivia that will come in handy if your printer can
print long lines. BASICO09 output columns are numbered between one
and 255.

POS WILL TELL YOU WHERE YOU ARE

Another handy formatting statement is POS. It returns the pre-
sent cursor position. For example:

IF POS > 31 THEN PRINT

You can use this line when you need to PRINT to a screen that
only displays 32 columns — like the Radio Shack Color Computer.
It causes BASICO9 to issue a carriage return and linefeed when the
cursor moves past the 31st column. There are many other uses for
the POS statement. Turn your imagination loose!

PRINT USING GIVES YOU COMPLETE CONTROL

If you have no use for form and are quite content with a screen
filled with numbers printed in random locations — feel free to skip
the rest of this chapter. You'll find no need for pretty printing. If
however you like things neatly organized with all your rows and col-
umns lined up like soldiers, standby. Your dream is about to come
true.

PRINT USING makes it easy to generate slick reports that are
sure to please your boss. But before we give you the details, let’s
show you the difference between PRINT and PRINT USING. Enter
and RUN the procedure DEMO in Chapter One. Notice how slick
the multiplication table is lined up.

Now, enter the edit mode and change the line containing the
PRINT USING statement so that it uses a normal PRINT statement.
Then, RUN the program again. Wow, what a difference! Convinc-
ed? Let's move ahead.

PRINT USING normally sends its output to the standard output
device — your terminal. When you want it to output to a printer or
disk file, you need only add an optional path number to your statement.

PRINT #es USING 'S801"", “"Hello Esther!"”

You tell your computer how you want it to format your informa-
tion by including a format specification between the words PRINT US-
ING and the data. For example, the ““S80A "’ above tells BASIC09
to center the message in a line 80 characters long.

The format specification tells BASIC09 the TYPE of number you
will be printing, the width of the print field, and how you want the data
arranged. You can line up the left margin, the right margin, or center
a column of data.

124

As BASICO09 sends your data to the terminal it matches up each
format specification with an item in the output list. If it runs out of
format specifications before it runs out of data, it goes back to the
first format specification and starts through the list of again.

Here’s another detail you must watch closely. The TYPE of data
called for in the format specification must agree with the TYPE of data
in the output list.

A format string may contain one item or several. Also, when you
need to specify more than one format in a line, you must separate each
format specification with a comma.

You can pass two kinds of format specification to BASIC09. The
first controls the format of an item from your output list. The second
sends its own data. Examples of the second type are the codes that
send tabs or a string of characters to your terminal.

Format specifications are made up of a letter, a number, and a
special character that tells BASIC09 how to justify the data.

The letter tells BASIC09 what type of data it can expect to find
in the output list. One of six letters is used.

REAL, INTEGER or BYTE data (decimal format)
REAL, INTEGER or BYTE data (exponential format)
INTEGER or BYTE data

HEXADECIMAL format of ANY data type

STRING format

BOOLEAN format (prints TRUE or FALSE)

WHIT—mMmX
imnmmnnnmnimn

The number following the letter is a constant that tells BASIC09
the field width. Here’s how it works.

When you tell BASICO09 that you want a field width of 10, you
are telling it to allow 10 column positions for this field — no matter
how many positions it takes to hold the data.

When you pick a field width you must consider the maximum size
of your data and allow a few extra positions. For example, a REAL
number printed in decimal format needs extra spaces for the decimal
point and sign character.

When you print in the exponential format you must leave space
for the mantissa sign, a decimal point and exponent characters.

The justification character can be a less than sign, ““ <, a more
than sign, ““>"’, or an up arrow, ‘17",

A ‘<’ causes the data to be justified to the left with a leading
sign and trailing spaces.

125

A ‘<’ causes the data to be justified to the right with leading
spaces and sign.

The up arrow, ““A”’, causes different results with each format.

Used with real numbers, the “A’’ gives you a financial format.
The field is right justified with leading spaces and a trailing sign
character.

Used in the INTEGER format, the “‘ A"’ right justifies the data with
leading sign and zeros.

And finally, used in the HEXADECIMAL, STRING, or BOOLEAN
formats, the ‘1’ simply centers the data in the field. Here are some
examples.

FORMAT PRINT POSITIONS

SPECIFICATION 1234567890
PRINT USING "“R8.2< ", 5678.123 5678.12
PRINT USING "“R8.2> ", 12.3 12.30
PRINT USING “R8.2> ", -555.9 -555.90
PRINT USING “R10.27", -6722.4599 6722.46-
PRINT USING "“H2< ", 100 C4a
PRINT USING "“H4< ", 100 00C4
PRINT USING 'S8 <", Hello Hello
PRINT USING 'S8 > ", Hello Hello
PRINT USING “S87", Hi Hi

These examples give you a good idea of how the PRINT US-
ING statement works. Use the numbers above the last column to com-
pare the effect of different format specifications.

Let’s look now at the second form of format specification — the
type that actually sends its own data to your screen. BASICO09 gives
you three control specifications to control horizontal formatting. They
may be used anywhere in a PRINT USING statement.

T6 TABS to column 6
X6 Outputs six SPACES
"string”’ PRINTs the word, "'string”’

Here’s an example:

PRINT USING ’“addr’’,X2,H4,X2, 'data’’,X2,H2'",1000,100

The output from the line above looks like this:
addr 03E8 data C4
BASICO09 also lets you repeat a sequence of specifications several
times by typing a repeat count followed immediately by the specifi-

cations you want to repeat. The specifications are placed in
parentheses.

126

Both of these lines print the same way.
"2(X2,R8.2>)" “X2,R8.2>,X2,R8.2> "

PRINT USING statements really make your data look profes-
sional. To see the result, RUN these sample programs.

PRIMES
PROCEDURE primes
0000 (* A program to compute and tabulate)
0024 (* the first N prime numbers. *)
0044
0045 (* CONSTants *)
0054 DIM nprimes,sqrtnp:INTEGER
005F nprimes =400
0067 sqrtnp =20
006E
006F (* VARiables *)
007E DIM prime:BOOLEAN
0085 DIM i,j,k,lim,x,square:INTEGER
00AO DIM p(400):INTEGER
00AC DIM v(20):INTEGER
00B8
00B9 p(1):=2
00C3 x:=1
00CA lim:=1
00D1 square: =4
ooD8
00D9 FOR i: =2 TO nprimes
00EA
OOEB REPEAT
00ED X:=X+2
OOF8
00F9 IF square< =x THEN
0106 v(lim): = square
0112 lim:=lim+1
011D square: = p(lim)* p(lim)
012F ENDIF
0131
0132 k:=2
0139 prime: = TRUE
013F
0140 WHILE prime AND k<Ilim DO
0151
0152 IF v(k)<x THEN
0162 v(k): = v(k) + p(k)
0178 ELSE
017C prime: = x < > v(k)
018B kizk+1
0196 ENDIF
0198

0199 ENDWHILE

127

019D

019E UNTIL prime

01A6

01A7 p(i): =x

01B3

01B4 IF MOD(i,10) =0 THEN
01C3 PRINT

01C5

01Cé6 FOR j:=i-9 TO i
01DB PRINT USING 16 > ",p(j);
01EB NEXT j

01F6

01F7 ENDIF

01F9

01FA NEXT i

0205

0206 PRINT PRINT

020A

020B END

020D

020E

The procedure primes prints the first several hundred prime
numbers in 10 neatly spaced fields exactly six columns wide. The
table comes in handy every once in a while too. It may even win the
most insignificant trivia contest at a party.

Here's one that should really interest you. Want to get rich?

FUTURVAL

PROCEDURE futurval

0000
000F
001A
001B
004F
0050
0078
0079
00A2
00D1
0105
011D
011E
012F
0148
0149
0177
0179
017A

DIM value,principal,interest:REAL
DIM timescompounded,years:INTEGER

PRINT "Let’s figure the future value of an investment!

REM First we need to ask a few questions.

INPUT ““What is your initial investment? "“,principal

INPUT "OK, What is the nominal interest rate? '|interest

INPUT "How many times will interest be compounded? “’,timescompounded
INPUT “"How many years? ““,years

interest = interest/timescompounded/100
value = principal*(1 + interest)/(timescompounded/years)

PRINT “Your future value is $'’; INT(value*100 + .5)/100
PRINT

END

128

To run this program just type RUN and answer the prompts. Hap-
py Daydreaming!

In this chapter we introduced you to TAB, POS, and PRINT US-
ING. You should be able to print a report that really dazzles the boss.

We promised you a short chapter. | hope you weren’t disap-
pointed. Don’t hang up the keys to your Mercedes yet — we only
have two chapters to go. You're well on your way to mastering
BASICO09.

In Chapter 12 we’ll show you how your BASIC09 procedures can
RUN other procedures automatically. See you there!

129

SUMMARY

30

CHAPTER TWELVE

letting BASICO09 run its own
programs

In Chapter Five we taught you how to drive your Mercedes with
a stick shift. Working with BASIC09’s system mode, you learned a
lot of commands and found out how to RUN your programs manual-
ly. Now, we’ll shift to the automatic transmission and show you what
BASICO09 can do on its own.

In this chapter you’ll learn more about the RUN statement and
find out how to use it within your programs.

You'll learn how your programs can run many smaller tasks —
or procedures — automatically. in fact, we’ll be encouraging you to
break your problems down into these smaller, more manageable
pieces.

You’ll be in for a real treat when we show you how to make your
procedures run themselves over and over again. It’s a technique call-
ed recursion that makes it easy for you to solve many tough problems.

And finally, you’ll meet parameters. We’ll show you how to define
them and give you a chance to pass them to a procedure. We’ll even
show you how to love them interactively as you type them inside a
RUN command from BASIC09’s system mode. Before the chapter
ends, you’'ll be letting all your programs pass them. Don’t worry,
they’re perfectly legal!

131

MODULARITY

THE RUN STATEMENT: A PROGRAMMER’S MARATHON

Novels are merely organized collections of well written chapters.
Chapters contain a number of well written paragraphs. Paragraphs
are collections of carefully constructed sentences. Sentences are just
short groups of well chosen words.

Get the idea? Great! So when are you going to write the great
American novel? See you at the bank.

The analogy between writing and programming is strong. A good
writer uses short words to build short sentences. He organizes those
short sentences into powerful paragraphs. In a few days, those
paragraphs become a chapter. And in a few months, the chapters
become a book.

A writer does not sit down and write a book. Rather, he breaks
the subject matter down into logical chapters. That done, he attacks
each chapter with vengeance. Another logical division is made and
ideas for sub-chapters are researched. When the research is com-
plete an outline of paragraph ideas is put on paper. Finally, sentences
are composed, one word at a time.

Today, a similar approach is being used by successful program-
mers. It’s called structured programming.

Your first step as a programmer is to define the problem you are
trying to solve in terms of smaller problems. These small problems
can then be broken down into yet smaller problems. Eventually you
will reach the point where you can transiate your problem directly into
a statement the computer can understand.

After you have tackled your programming problems in this manner
for a while you will begin to see a similarity in the ‘““smaller problems.”
Then, you’ll start to save your solutions and use them again and again.
With BASICO09, you’ll be saving and running ‘“modules’’.

Eventually you’ll have a library of modules that can be used as
building blocks in hundreds of programs. Building blocks are what
modularity is all about. BASICO09 calls its modules “‘procedures’’ and
makes them easy to use.

There are more ways to use BASIC09's RUN statement than
there are marathons. We introduced you to this command briefly in
Chapter Five. Now, we need to get you in shape for the big race.
Let’s review.

132

If you are operating in BASIC09’s system mode, running a
program can be as simple as typing RUN. You can do this when your
program or procedure is self contained and doesn’t need any
parameters.

Remember, when you type RUN, BASIC09 attempts to RUN the
current procedure. That's the one marked with the star when you look
at a DIRectory of your workspace. If you have a number of procedures
in your workspace, you must tell BASIC09 which one you want to RUN.
For example, if you’re preparing for a race you might want to “RUN
FASTER".

PASS THE WORD — USE A PARAMETER

If you want to succeed in business, you must pass the word to
your employees. If you want to win the war, you must pass the
ammunition. Likewise, if you want your BASIC09 procedures to RUN
properly, you must pass the parameters.

It’s really frustrating when you know how to do something well
— how to change a flat tire on your Mercedes for example — but can’t
make someone else understand. The chauffeur always pleads
ignorance and you wind up changing it yourself.

An analogy can be made to programming. If you don’t know how
to tell the computer what to do, you’ll wind up doing it yourself.

For example, if you want to multiply two numbers and print the
product, you can approach the problem several ways. You can write
a procedure to multiply ““2”’ times ‘2"’ and another to multiply ‘‘2”
times “4”’, etc. But that would take a lot of time and memory —
besides, it would bore you to death.

It would be much easier to write one procedure that can multiply
any two numbers and then pass the numbers you want it to use
when you need an answer. The numbers you are passing are called
parameters.

Never forget to pass your parameters. Remember what
happened when you tried to “RUN ROMAN”’ the first time in Chapter
Five? Did you really expect your computer to know which number
you wanted to print in Roman numerals — even though you forgot
to tell it?

Remember, a parameter is a number, character, or string of
characters that is given or passed to another BASIC09 procedure.

133

THE HARD WAY

It may be a variable name, a string constant or a number. Study these
statements.

Using Literals:

RUN print__a__word("'Hello ")
RUN roman(1983)

Using Variables:

RUN print__a__ word(firstword)
RUN roman(year)

To make sure we’re all on the same track, we’ll look at three
procedures that show how parameters make life easy.

HARDMULT
PROCEDURE hardmulit
0000 DIM firstnumber,secondnumber:INTEGER
000B DIM product:INTEGER
0012
0013 firstnumber: =2
001A secondnumber: =2
0021
0022 product: = firstnumber*secondnumber
002E
002F PRINT
0031 PRINT product
0036 PRINT
0038
0039 END

We could have made the PROCEDURE hardmult a lot simpler.
For example, we could have written;

PRINT
PRINT 2*2
PRINT

Yes, the three lines above simply multiply two times two and print
“4" on your terminal. The two extra PRINT statements print blank
lines above and below the result to make the presentation look better.

Now, look at the PROCEDURE hardmult. We’ve done the same
thing — multiplied two times two and printed the answer on your
terminal. Why did we use so many lines?

Glad you asked — it gives us another chance to encourage you
to make your programs readable. Notice that we used complete words

134

— words that make sense in English — when we defined the variables.
We also DIMensioned all our variables. We hope you will follow this
practice, too. It saves a lot of memory and makes the program much
easier to understand.

So why is the above example the “hardway’’ to solve our problem.
What happens when we want to multiply four times two or 10 times
10? You guessed it. We would have to write a new procedure —
or at best, edit the old one — each time we needed to multiply new
numbers. Totally unsatisfactory.

EASYMULT
PROCEDURE easymult
0000 PARAM firstnumber,secondnumber:INTEGER
000B DIM product:INTEGER
0012
0013 product: = firsthumber*secondnumber
001F
0020 PRINT
0022 PRINT product
0027 PRINT
0029
002A END

Enter the PROCEDURE easymult — there’s always a better way
to build a mousetrap. This procedure does the same job. It multiplies
two numbers and prints the result. What makes it better?

The answer is almost as simple as the coding. ““Easymult” is
universal. It can multiply any two INTEGER numbers and print the
correct result. It does not limit you to a set of two numbers. But, how
does the procedure know which numbers you want to multiply?

It's simple. You give it two numbers. For example, you could
type:

RUN EASYMULT (2,2)

You have just passed two parameters to a procedure. Your
computer will respond by printing ‘4",

Let’s try it again. Type:
“RUN EASYMULT(2,5)"
Your computer should print “10’’. This time, the value ‘2"’ was
assigned to the variable “‘firstnumber’’. Likewise, the value “5’” was

assigned to the variable ‘‘secondnumber’’. The procedure then
calculated the product, “10”’, and printed it.

135

THE EASY WAY

AUTOMULT

PROCEDURE automulit

THE AUTOMATIC WAY

0000 PARAM firstnumber,secondnumber:INTEGER
000B DIM counter1,counter2:INTEGER

0016 DIM answer:INTEGER

001D

001E FOR counteri: = firsthumber TO secondnumber
0030 FOR counter2: =firstnumber TO secondnumber
0042 answer: = counter1*counter2

004E RUN printanswer(answer)

0058 NEXT counter2

0063 PRINT

0065 NEXT countert

0070 END PROCEDURE printanswer

0000 PARAM answer:INTEGER

0007 PRINT USING I8 > '; answer

0013 answer: = answer*2

001E END

You understand how to pass a parameter to a procedure from
BASIC09’s system mode now. But how do you teach the machine
to pass parameters automatically? For the answer let’s look at the
procedure automult. First, enter it in your workspace and type:

RUN AUTOMULT (1,9)

Ill bet it printed a multiplication table that looked just like the
one you saw when you ran the procedure demo in Chapter One. So,
what’s the big deal? Try:

RUN AUTOMULT (10,20)

Same format. Different numbers. Slick huh? Are you begin-
ning to see how parameters can make your life easier. Let's look
closer.

When you typed the last command, you passed the value ““10”
to the variable firstnumber. Likewise, the value ‘20" was given to
secondnumber. The procedure then used these values as the begin-
ning point and end point in a FOR ... NEXT loop. When you sent
it a different set of values — different parameters if you will — the

procedure started the loop in a different place and printed different
numbers.

You supplied the parameters in the command line. What did the
machine do for itself? Look closer.

Each time through the loop, the procedure calculated “answer’’.
it then commanded the computer to "“RUN printanswer(answer)”’.

136

Each time you ran the PROCEDURE automult, it ran the PRO-
CEDURE printanswer many times. And, every time ‘“automult’
passed a parameter to ‘‘printanswer’”’, it had a different value. The
name of that parameter, “‘answer’’, stayed the same. Only its value
changed.

IT WORKS BOTH WAYS

We'll talk more about ‘‘values’ and ‘“‘names’’ shortly. But first,
we'll show you that parameters can be passed in both directions. Enter
BASIC09’s Edit mode and add the following line to the PROCEDURE
automult between the RUN statement and the NEXT counter2
statement.

PRINT USING 15> "";answer;

Now RUN the new PROCEDURE automult and see what
happens. If you added the new line in the right place, you’ll notice
that ‘‘automult’’ now prints twice as many columns as it did originally.

You'll see all the original “‘answers’’ plus a number of new
columns that list the value of each “‘answer” multiplied by two. There
is no line to multiply the answer by two in “automult’”’. When were
the new answers calculated?

For the answer, look closely at the PROCEDURE printanswer.
Sure, it prints the “‘answer’’ every time “‘automult’ asks. And, it does
something else too. After it prints “answer’’, it assigns a new value
to “‘answer’’. The new value is “‘answer’’ times two. And, that new
value is passed, as a parameter, back to “‘automult’’.

You didn’t natice this last bit of magic when you ran the original
“automult” because the procedure just ignored the new value of
“answer”’. Only after you added the new line, was it evident that
“printanswer’’ had indeed changed the value of “answer’’.

What Value, A Name?

Why all the talk of values and names? Did you think you had
picked up a Sociology textbook by accident? Rest easy. There’s
method to our madness. What we’re really talking about here is how
your computer should store your parameters. After all, we must keep
them safe and sound for the procedure that’s going to use them.

A parameter is really nothing more than a variable. A variable
is merely a place in memory set aside to hold a value. It's value at
a particular time depends on an earlier assignment statement in your
program. After a statement like “‘answer: =4"’ in a procedure, the
memory location set aside for the variable ““answer’’ holds the value,
1‘471.

Following the same logic, if your procedure contains a statement
such as, "RUN printanswer(answer)’’ after the assignment above,

137

the value “4”’ will be transferred to the PROCEDURE printanswer.
In this case you have passed a parameter to another procedure ‘‘by
name.”’

if your procedure contains the statement “RUN printanswer(4)”’,
the same result appears on the terminal. But since “*4’’ is a constant,
you have passed the parameter “‘by value.”

You may also pass a parameter ‘‘by value” by using an
expression. If you type “RUN printanswer (answer$0)”’ or “‘RUN
printanswer(answer*1)"”’, the same result appears on the terminal but
again you have passed the parameter “‘by value.”

But, as my newswriting instructor so aptly commented after he
read the lousy lead sentence | had just written, *“Who cares?”

“You do,” | said. ‘And, for a very good reason.”’

Ponder this. If you want the procedure you are calling to return
a value, you must pass the parameter to it “‘by name.” When you
pass a parameter “‘by name’’, the procedure associates the memory
location of the parameter you passed with a name in a local
PARAMeter statement. The procedure can change the value stored
there and can return that value to you.

On the other hand, if you pass a parameter ‘‘by value,” the
procedure reacts in a completely different way. When it sees a “‘value”
or an “‘expression’’ coming, it creates a new temporary storage area
in free memory and stores the ““value’ there. It then uses the value
where needed. When the procedure is finished, it gives the temporary
storage area back to free memory. The system ‘‘forgets’ that these
storage locations ever existed. There is simply no way for the calling
procedure to get a value back. Again, you must care.

There is a fringe benefit when you let one procedure call another
by value, however. Think about it this way. Since the called procedure
can’t change the value of a parameter passed to it, the calling
procedure has the value of its variables protected from the called
procedures. That’s a pretty cheap premium for insurance these days.

Before we get off the parameter kick and move on to recursion,
let us leave you with a few sobering thoughts. Always make sure the
parameters in your called procedure are of the same type as those
in your calling procedure.

In fact, it’s a good idea to make sure that the parameters in the
RUN statement agree exactly with those expected by the PARAM
statement in the called procedure. Otherwise, you could get socme
very strange results.

Also, the number of parameters must be the same. They must
also be in the same order and agree with regard to size, shape, and
type. Review Chapter Seven for the details of BASIC09 data types.

138

If you don’t believe parameters in the calling and called
procedures must agree and need a little mental gymnastics — sit down
and write a procedure that generates an INTEGER in the form of an
expression. Then, have it try to pass this expression to a procedure
that is expecting a BYTE parameter.

If the called procedure is supposed to print the value of the
parameter, I'll bet you’ll see a lot of zeros — and, | don’t mean
Japanese airplanes. It's happening because the byte your called
procedure is printing is being taken from the high-order byte of the
two-byte INTEGER your calling procedure is sending.

You see, all expressions are sent to a procedure as INTEGER
or REAL values. You can send BYTE variables to procedures till your
hearts content — just remember to send them “by name.”

Here’s another example where parameters are passed from
procedure to procedure. As you study ‘“‘trig’”’, notice that the
PROCEDURE ‘‘display’’ updates the value of the parameter funcval
each time it is called. Thus the variables num1 and num2 take on
a new value after each pass.

TRIG
PROCEDURE trig
0000
0001 numi:=0
0009 num2:=0
0011
0012 REPEAT
0014 RUN display(num1,SIN(num1))
0023 RUN display(num2,COS(numz2))
0032 PRINT
0034 UNTIL num1>1
0040
0041 END PROCEDURE display
0000
0001 PARAM passed,funcval
000A
000B PRINT passed; "’:’’; funcval,
0019
001A passed: = passed + .1
0029
002A END

| remember when mom and dad built their new home. They hired
a contractor to put up the frame and then moved into an unfinished
shell. They lived in the house while they were building it. They used
that basic shell to protect them from the cold of winter while they
installed the trim. Make sense? Good. You’re half way down the
road to understanding recursion.

139

RECURSION

When you stop to think about it for a second, you’ll find there’s
no reason why you can’t use a similar technique to build a program
or procedure. Consider the PROCEDURE reverse.

REVERSE

PROCEDURE reverse
0000
0001 PARAM number:INTEGER
0008
0009 PRINT MOD(number,10);
0012
0013 IF INT(number/10)< >0 THEN
0024 number: = INT(number/10)
0031 RUN reverse(number)
0038 ENDIF
003D
003E PRINT
0040
0041 END

Reverse takes the string of decimal digits in an integer
number and prints them in reverse order. Thus, the number
you send it as a parameter is printed in reverse order. For Ex-
ample, if you type:

RUN REVERSE (1234) <RETURN >

BASICO09 prints:
4321

Here’s what happens. BASIC09’s MOD function returns the re-
mainder after an integer division. The MOD of 1234 is ‘4", so the
first working line of our procedure prints that result. Next, the variable
number is divided by 10.

Recursion enters the picture in the next line as the procedure
“runs’’ itself again with the new value of number. This recursive pro-
cess repeats itself until number becomes zero.

Time out for a quick warning. You won’t be able to reverse an
integer number larger than 32767 since that is the largest possible
positive integer allowed in BASIC09.

You should also be aware that using recursion can use a lot of
memory. This happens because each time a procedure calls itself,
a new storage location for its local variables is created. Since there
is a finite amount of storage space in your workspace, there is also
a limit on the number of times a procedure can call itself before runn-
ing out of memory.

140

Since we’ve gotten you interested in recursion, let’s give you a
few more examples to run and study.

HANOI
PROCEDURE hanoi
0000
0001 REM from Basic09 Manual
0013 REM move n discs in Tower of Hanoi Game
0039 REM see BYTE, Oct. 1980, Pg. 279
0058
0059 PARAM number:INTEGER; from,overto,other:STRING[8]
0073
0074 IF number=1 THEN
0080 PRINT “move /’’; number; '’ from "’; from; "’ to ’; overto
00A6 ELSE
00AA RUN hanoi(number-1,from,other,overto)
00C5 PRINT "Move #’'; number; '’ from ’; from; '’ to ’’; overto
00EB RUN hanoi(number-1,other,overto,from)
0106 ENDIF
0108
0109 END
010B
This procedure is a version of the famous Towers of Hanoi. The
object of the game is to move the rings from one post to another us-
ing the minimum number of moves. Notice that each time the pro-
cedure runs, it runs itself again with a new value of number. This
happens until the value of number is ““1”’. When that happens, the
problem has been solved.
Here’s a hint. Notice that the PROCEDURE hanoi requires four
parameters when it is called. Notice further that one of these
parameters is an integer number and the rest are strings. BASIC09
requires that you place quotes around your strings when you enter
parameters. The command line to run ““‘Hanoi’’, after you have load-
ed it into your workspace is:
RUN HANOI (8,”Dale’s”’,’Esther’s’,"Michele’s ")
SUMMARY

In this chapter you’ve been introduced to several powerful con-
cepts. You've learned more about running BASIC09 procedures from
a command line while operating in the system mode.

You’ve been introduced to parameters and discovered how to

use them to pass data to a procedure. In fact you’ve even learned
how to get information back from a procedure.

141

You've learned how to write procedures that run other procedures
automatically.

And, you’ve been introduced to recursion as we showed you pro-
cedures that run themselves over and over again.

In Chapter 13 you'll learn about using 6809 machine language

subroutines with BASIC09. May your pit stops always be short and
your Mercedes on course.

142

CHAPTER THIRTEEN

using machine language

In this chapter we're going to sneak a quick look at a subject
that may be alien to you — 6809 machine language subroutines. This
is really a topic for advanced programmers. The truth is that you may
write programs in BASIC09 for years and you may never need to
tangle with machine language.

That’s because BASICO9 is so powerful that you may never need
machine code. Yet, there are times — especially when you are run-
ning real time applications — that you will want its speed. We’'ll try
to remove some of the mystery.

One warning before we get started: the subject of how to pro-
gram in machine language is way beyond the scope of this book. If
you don’t already know how, either get a book on the subject or skip
this chapter altogether.

STACKS

To understand how BASICO9 talks to your machine language
routine you will need to understand the concept of stacks. BASIC09
sends its parameters to your machine language routine on a stack
and expects to find the results there when your subroutine returns
control.

Here’s an analogy. An executive uses an ‘‘in-basket’’ to hold
incoming correspondence. When his secretary brings in letters and
memos, she places them in the basket. After he has answered several
telephone calls and attended two or three meetings the basket usually
contains quite a stack of paper.

143

If the manager works like most of us he will take a letter off the
top of the stack and work on it first. This works fine — unless you're
an eager beaver and delivered your report first. If you are, your hard
work will be buried at the bottom of the stack. You might have been
the first to deliver, but you’ll be the last to be read.

Our manager is using what is known in the computer world as
a LIFO — a last in, first out stack. Eager beavers don’t think much
of them. LIFO’s are common in many computer languages and are
an easy way to get you to think about stacks.

Now, let’'s pretend that each piece of paper in the manager’s in-
basket is a memory location in your computer. The first item is stored
in memory location number one, the next one in number two and so
forth.

If you just knew where the first item was located in memory, you
would know the location of every piece of information. This is where
the magic of your 6809 microprocessor enters the plot. The 6809 uses
one of its registers to point to the stack — memory location number
one as we called it earlier. It's called the stack pointer.

BASICO9 uses a stack to transfer data to and from its own pro-
cedures and machine language routines. This stack is very organiz-
ed and always holds the same information at the same position in the
stack.

Your machine language routine uses this 6809 register — the
hardware stack pointer — to find the information or parameters
BASICO09 puts in the stack for it. It also uses this register to send the
results back to BASIC09. Each specific piece of information BASIC09
sends to your routine is stored at a fixed distance from the address
held by this register. The fixed distance is known as an offset.

The address pointed to by the stack register has an offset of zero.
The next address has an offset of one, the next two, etc. The stack
pointer and the offsets make up what is known as a stack frame. Here’s
what BASIC09’s stack frame looks like.

BASIC09 STACK FRAME

Size of Last Parameter
Address of Last Parameter

10,S Size of Second Parameter

8,S Address of Second Parameter

6,S Size of First Parameter

4,S Address of First Parameter

2,S Number of Parameters being passed
0,S Return Address of BASICO09 routine

144

The address held in the 6809’s hardware stack pointer when your
routine is called is at the bottom of stack frame shown above. In fact
the coding, “0,S” is a way of expressing an address in 6809 assembly
language. In English, “0,S”’ means the memory location pointed to
by the 6809 S-register — or stack pointer. In 6809 assembly language
this is known as ‘‘indexed’’ addressing.

Let's take it one step farther. The *2,S” refers to the memory
location two bytes higher than the address held in the S-register. For
example if the S-register holds a value of $A000, then 2,S would be
$A002 ... 4,S would represent $A004, etc.

Since the BASIC09 Tour Guide is concerned mainly with a higher
level language, we'll only give you a short and simple assembly
language programming example here. Hopefully it will whet your
appetite and give you a starting point for your study of this new and
exciting world.

As an example, we’ll show you a routine to add two INTEGER
numbers. It is written in 6809 assembly language. Granted, there is
no need for a routine like this with BASICO09, but we need a place
to start.

Add two INTEGER numbers
Called from BASICO09 by:

* % »

* RUN addtwo(numone,numtwo)

LET’S ADD IT ALL UP

* * Where numone and numtwo are INTEGER parameters
Type SET SBRTN + OBJCT
Revs SET REENT + 1

MOD addend,addnam,type,revs,addent,0
addnam FCS /addtwo/

addent LDD [4,S] get numone
ADDD [8,S] add to numtwo
STD [4,S] return result in numone
CLRB indicate no error
RTS return to BASICO09
EMOD

addend EQU *
END

How does it all work? First, the RUN statement will look for a
module named ‘‘addtwo’’ in BASIC09’s workspace. Since the routine
is a 6809 machine code subroutine, it won'’t find it there. Machine
code is always loaded into system memory.

When RUN doesn’t find “‘addtwo’ in BASIC09’s workspace, it
will search 0S-9’s module directory to see if there is a module in
memory with that name. If “addtwo’’ has been loaded into memory,
RUN will find it and check to see what type of code it contains.

145

If the module contains 6809 machine code — like “‘addtwo’” —
RUN makes a subroutine call to the module’s entry address. When
the return from subroutine instruction, RTS, is encountered, control
returns to BASIC09.

If RUN doesn’t find “addtwo’’ in system memory, it still won’t
give up. It will attempt to load the module from a file by the same
name in the current execution directory. You almost have more
chances than a cat.

To understand what happens when you type RUN add-
two(numone,numtwo) from BASIC09's system mode, we must take
a close look at the stack frame introduced above.

Let’s pretend that your calling procedure sets numone equal to
“2” and numtwo equal to “‘4”’ before it RUNs addtwo. Your stack
frame should look like this.

LOCATION CONTENTS

10,8 0002 length of two byte INTEGER
8,8 address of numtwo

6,S 0002 length of two byte INTEGER
4,S address of numone

2,S 0002 we have two parameters
0,S RETURN address BASIC09’s reentry address

Before BASICO9 turns control over to the subroutine ‘‘addtwo’
by executing a jump to subroutine instruction it loads the 6809 stack
register with the address of the stack frame above. The two byte value
of the INTEGER variable numone will have been stored at some ad-
dress in memory. That address will then be stored four bytes above
the stack pointer in the stack frame — at “4,S”’. Likewise, the ad-
dress where the variable numtwo is stored will be placed in the memory
location eight bytes above the stack pointer.

BASICO9 puts the return address at the memory location pointed
to by the stack pointer and puts the length of the two variables in the
memory locations six and 10 bytes above the stack pointers address.
Since the variables numone and numtwo are INTEGER variables, they
have a length of two bytes. Had they been REAL variables, they would
have had a length of five.

When the machine code gets control it loads the 6809’s D-register
with the value stored at the memory location pointed to by the value
stored at the location, “4,S”’. The brackets in the code, “[4,S]"’, tell
the assembler that you want to load the D-register with this data in-
stead of the value stored at 4,S itself. The brackets indicate the 6809’s
indexed, indirect addressing mode.

The routine then adds the value it loaded into the D-register with
the value pointed to by the data at 8,S and stores it in the address

146

pointed to by the data at 4,5 — or numone. Before returning to
BASICO09, ‘“‘addtwo’’ clears the 6809 B-register to indicate there were
no errors encountered during the operation.

After the RUN statement, it you PRINT numone, you should get
aresult of “‘6”’. This result happens because your machine language
routine has stored its result in the first parameter — the one your
BASICO09 calling procedure named ‘‘numone”.

You should have enough ammunition to get you started linking
BASICO09 procedures to assembly language routines now. If you're
already a seasoned assembly language programmer, you should have
no problems. If not, you should consult one of the many fine 6809
assembly language primers now on the market. You’ll also find several
examples in Microware’s BASIC09 Reference Manual.

In Chapter 14 we’li present some interesting programs for you
to study and for your amusement.

147

SUMMARY

148

CHAPTER FOURTEEN

example programs

SAMPLE PROGRAM ONE—FINANCES

PROCEDURE Finance
DIM Selection:BYTE

LOOP
RUN Clearscreen

PRINT "Financial Calculations?”
PRINT '"=========z=============="
PRINT

PRINT "1 — Investments’’

PRINT ‘2 — Depreciation”’

PRINT ‘3 — Loans”’

PRINT "0 — I Quit!”’

RUN Prompt(Selection)

EXITIF Selection=0 THEN
RUN Clearscreen
PRINT
PRINT "Thank You for letting me help with your finances. "’
PRINT
ENDEXIT

IF Selection=1 THEN RUN Invest
ELSE
IF Selection=2 THEN RUN Depreciate
ELSE
IF Selection=3 THEN RUN Loan
ELSE
RUN EntryError
ENDIF
ENDIF
ENDIF
ENDLOOP
END

149

PROCEDURE ClearScreen
DIM clearscreen:STRING[1]
clearscreen: = CHR$($1C)
PRINT clearscreen
END

PROCEDURE Printline
DIM line:STRING[51]
M@ = 7
PRINT line
END

PROCEDURE Prompt
PARAM Selection:BYTE
DIM Prompt1:STRING[32]
DIM Prompt2:STRING[32]

Prompti: = ""Please select one of the options’’
Prompt2: = "by typing the proper number”’
PRINT

PRINT Prompt1
PRINT Prompt2;
INPUT Selection

END

PROCEDURE YesOrNo
PARAM Answer:STRING[1]
DIM response:STRING[1]

REPEAT

PRINT
INPUT “Would you like to make another calculation (Y) or (N)? ”’

,response
RUN clearscreen
UNTIL response= "Y' OR response= "y’ OR response= "N’ OR response ='n"

Answer: =response
END

PROCEDURE EntryError
DIM response:STRING[1]
PRINT
PRINT “Your answer is not valid.’”’
PRINT “Hit any key to continue. *’;
GET #0,response
PRINT
END

150

PROCEDURE MakeltPretty
PARAM Value:REAL
PRINT USING ''T40,R12.2 > "",Value
END

PROCEDURE DisplayValue
PARAM Investment,interest,Value:REAL

PRINT
RUN Printline

PRINT “"Amount invested: °;
RUN MakeltPretty(Investment)

PRINT "'Value of accumulated interest: “’;
RUN MakeltPretty(Interest)

PRINT "Total Value of your investment: '’;
RUN MakeltPretty(Value)

RUN Printline
PRINT
END

PROCEDURE Invest
DIM Selection:BYTE

LOOP

RUN Clearscreen

PRINT "Investment Calculations?”
PRINT '=======z=======z============="
PRINT

PRINT ‘1 — Future value of a one-time investment”

PRINT "2 — Future value of regular deposits’’

PRINT '3 — Regular deposits required to create a desired value
PRINT ‘0 — That’s All Folks "’

RUN prompt(Selection)

EXITIF Selection=0 THEN
ENDEXIT

IF Selection=1 THEN RUN onetimefuture
ELSE
IF Selection=2 THEN RUN futureregdeposit
ELSE
IF Selection =3 THEN RUN DepositsRequired
ELSE
RUN EntryError
ENDIF
ENDIF
ENDIF
ENDLOOP
END

rr

151

PROCEDURE Depreciate
DIM Selection:BYTE

LOOP
RUN ClearScreen
PRINT '"Depreciation Calculations”
PRINT '=z==c===2=zc=z==zc==s=======c=zc======="
PRINT
PRINT “1 — Annual Depreciation Rate’’
PRINT 2 — Amount of Depreciation”’
PRINT “3 — Salvage Value”’
PRINT "0 — Return to Main Menu”’

RUN prompt(Selection)

EXITIF Selection=0 THEN
ENDEXIT

IF Selection=1 THEN RUN AnnualRate
ELSE
IF Selection=2 THEN RUN DepreciationAmount
ELSE
IF Selection=3 THEN RUN Salvage
ELSE
RUN EntryError
ENDIF
ENDIF
ENDIF
ENDLOOP
END

PROCEDURE Loan
DIM Selection:BYTE

LOOP
RUN ClearScreen
PRINT "Loan Calculations”
PRINT '"===========z======"
PRINT
PRINT “1 — Regular Payments on a Loan"”’
PRINT "2 — Last Payment of a Loan"’
PRINT “3 — Term of a Loan”’
PRINT ”“4 — Remaining Balance on a Loan”’
PRINT ’5 — Cost of Borrowing’’
PRINT "0 — Who Needs the ‘Loan Arranger’’”’

RUN prompt(Selection)

EXITIF Selection=0 THEN
ENDEXIT

152

IF Selection=1 THEN RUN RegularPay

ELSE
IF Selection=2 THEN RUN LastPay
ELSE
IF Selection=3 THEN RUN LoanTerm
ELSE
IF Selection =4 THEN RUN Balance
ELSE
IF Selection=5 THEN RUN BorrowingCost
ELSE
RUN EntryError
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF
ENDLOOP

PROCEDURE OneTimeFuture
DIM Investment,Rate,value,interest,years:REAL
DIM months,periods:INTEGER
DIM Response:STRING[1]

RUN ClearScreen

PRINT “Future Value of a One-Time Investment?”
PRINT "=========z===z=z=z=z=z=======c=c=c==zs====z=z=====z==z="
PRINT

INPUT “What is your initial investment? "', Investment

INPUT “What is the nominal interest rate? '’,Rate

INPUT "“Term of your investment (Years,Months)? ‘,years,months
INPUT “"How many compounding periods each year? "",periods

Rate: = Rate/periods/100

years: =(12*years + months)/12

value: = Investment* (1 + Rate)(periods*years)
value: = INT(value* 100 + .5)/100

interest: = value-Investment

RUN DisplayValue(Investment,interest,value)
RUN YesOrNo(Response)

IF Response = 'Y’ OR Response = "'y’ THEN
RUN OneTimeFuture

ENDIF

END

153

PROCEDURE futureregdeposit
DIM Deposit,Rate,Years,Value,Investment,Interest:REAL
DIM Months,Periods:INTEGER
DIM Response:STRING[1]

RUN ClearScreen

PRINT "Future Value of Regular Deposits?”
PRINT "=====z=====z======================="
PRINT

INPUT “"How much is each Deposit? “',Deposit

INPUT ""What is the nominal interest rate? "’,Rate

INPUT ""Term of investment (Years, Months)? "’,Years,Months
INPUT "How many deposits are you making per year? ’“,Periods

Rate: = Rate/Periods/100

Years: =(12*Years + Months)/12

Value: = Deposit*((1 + Rate)T(Periods*Years)-1)/Rate
Value: = INT(Value* 100 + .5)/100

Investment: = Deposit*Years *Periods

Interest: = Value-Investment

RUN DisplayValue(Investment,Interest,Value)

RUN YesOrNo(Response)

IF Response="Y" OR Response ="y’ THEN
RUN futureregdeposit

ENDIF

END

PROCEDURE DepositsRequired
DIM Value,Rate,Years,Periods,Deposit,Interest,Investment:REAL
DIM Response:STRING[1]

RUN ClearScreen

PRINT "Required Regular Deposits?”
PRINT '========================="
PRINT

INPUT ““What is the final value you desire? "",Value

INPUT ""What is the nominal interest rate? "’,Rate

INPUT ""Term of investment (Years, Months)? "",Years,Months
INPUT "How many deposits are you making a year? ’,Periods

154

Rate: = Rate/Periods/100

Years: =(12*Years + Months)/12

Deposit: = Value * Rate/((1 + Rate)'(Periods*Years)-1)
Investment: = Deposit* Years*Periods

Interest: = Value-Investment

PRINT

RUN Printline

PRINT ’Amount of required regular Deposits: '’;
RUN MakeltPretty(Deposit)

RUN Printline

RUN YesOrNo(Response)

IF Response = "Y' OR Response="y"" THEN
RUN DepositsRequired

ENDIF

END

PROCEDURE AnnualRate
DIM pricepaid,pricesold,years,rate:REAL
DIM months:INTEGER
DIM Response:STRING[1]

RUN ClearScreen

PRINT "Depreciation Amount
PRINT "===================="
PRINT

INPUT "How much did you pay for the item? ’',pricepaid
INPUT “How much can you sell it for? “,pricesoid
INPUT “"Depreciation Term (Years, Months)? “,years,months

years: =(12*years + months)/12
rate: = 1-(pricesold/pricepaid)T(1/years)
rate: = INT(rate* 100 + .5)

PRINT

RUN Printline

PRINT “Depreciation Rate (Percent): '’;
RUN MakeltPretty(rate)

RUN Printline

RUN YesOrNo(Response)

IF Response = "Y' OR Response = "y"” THEN
RUN AnnualRate

ENDIF

END

155

PROCEDURE DepreciationAmount
DIM PricePaid,Rate,Years,Depreciation:REAL
DIM months:INTEGER
DIM Response:STRING[1]

RUN ClearScreen

PRINT "Depreciation Amount
PRINT "=======z=z=z=z===z======="
PRINT

INPUT “"How much did you pay for the item? *’,PricePaid
INPUT ""What is the Depreciation Rate? '’,Rate
INPUT “What is the year of Depreciation? “",Years

Rate: = Rate/100
Depreciation: = PricePaid *Rate * (1-Rate)'(Years-1)

PRINT

RUN Printline

PRINT ""The amount of depreciation now is: '’
RUN MakeltPretty(Depreciation)

RUN Printline

RUN YesOrNo(Response)

IF Response="Y" OR Response= "y’ THEN
RUN DepreciationAmount

ENDIF

END

PROCEDURE Salvage
DIM PricePaid,Rate,SalvageValue:REAL
DIM Months:INTEGER
DIM Response:STRING[1]

RUN ClearScreen

PRINT "===c=c=c========"

PRINT

INPUT “"How much did you pay for the item? '/,PricePaid
INPUT “What is the depreciation rate? ‘’,Rate

INPUT “Depreciation Term (Years, Months)? "",Years,Months

Rate: = Rate/100
SalvageValue: = PricePaid*(1-Rate)!Years

156

PRINT

RUN Printline

PRINT "“The salvage value is: '’;
RUN MakeltPretty(SalvageValue)
RUN Printline

RUN YesOrNO(Response)

IF Response = "Y' OR Response="y" THEN
RUN Salvage

ENDIF

END

PROCEDURE RegularPay
DIM amountborrowed,years,rate,Holder,Payment:REAL
DIM months,periods:INTEGER
DIM Response:STRING[1]

RUN ClearScreen

PRINT "Regular Payment on a Loan
PRINT '===c======================="
PRINT

INPUT “How much do you want to borrow? ‘', amountborrowed

INPUT "“"What is the term of the loan (Years, Months)? “",years ,months
INPUT ‘"What is the annual interest rate? "',rate

INPUT "How many payments will you make per year? "',periods

rate: = rate/periods/100

years: = (years* 12 + months)/12

Holder: = 1/(1 + rate)?(periods * years)
Payment: = amountborrowed *rate/(1-Holder)

PRINT

RUN printline

PRINT "'Your regular payment will be: *’;
RUN MakeltPretty(Payment)

RUN printline

RUN yesorno(Response)

IF Response = 'Y" OR Response ="y THEN
RUN RegularPay
ENDIF

END

157

PROCEDURE LastPay
DIM borrowed,years,rate,regularpay,interestpayment,payonprincipal
;payholder:REAL
DIM months,periods,numberpayments,count:INTEGER
DIM Response:STRING[1]

RUN ClearScreen

PRINT "Last Payment on a Loan”

INPUT “How much are you going to borrow? ‘',borrowed
INPUT ""What is the term of the loan (years, months)? "",years
,months

INPUT ""What is the annual interest rate? "“,rate

INPUT “"How many payments will you make per year? ’',periods
INPUT “"How much is your regular payment? "‘;regularpay

rate: =rate/periods/100
years: = (years* 12 + months)/12
numberpayments: = periods*years

FOR count: =1 TO numberpayments
interestpayment: = INT(borrowed *rate* 100 + .5)/100
payonprincipal: = regularpay-interestpayment
borrowed: = borrowed-payonprincipal

NEXT count

payholder: =regularpay + borrowed

PRINT

RUN Printline

PRINT “Your last payment will be: ";
RUN MakeltPretty(payholder)

RUN Printline

RUN YesOrNo(Response)

IF Response="Y" OR Response="y"' THEN
RUN LastPay

ENDIF

END

158

PROCEDURE LoanTerm
DIM principal,regularpay,rate,term1,term2,term:REAL
DIM periods,months,years:INTEGER
DIM response:STRING[1]

RUN ClearScreen

PRINT "Term of a Loan"”
PRINT "=============="
PRINT

INPUT “"How much do you hope to borrow? ’,principal

INPUT “How much is your regular payment? “',regularpay
INPUT "“What is the annual interest rate? ‘' rate

INPUT “"How many payments will you make a year? '“,periods

rate: =rate/periods/100

term1: = 1-principal*rate/regularpay
term2: =1 +rate

term: = -(LOG(term1)/LOG(term2))/periods
months: = INT(term*12)

years: = INT(months/12)

months: = months-years*12

PRINT

RUN Printline

PRINT “The term of your loan would be: ’;
PRINT USING “'14 > "",years;

PRINT ” years'’;

PRINT USING 14 > ''; months;

PRINT " months.”’

RUN Printline
RUN YesOrNo(response)

IF response="Y" OR response= "y’ THEN
RUN LoanTerm

ENDIF

END

159

PROCEDURE balance
DIM principal,regularpay,rate,ratei,rate2:REAL
DIM count,paymentsperyear,paymentsmade:INTEGER
DIM response:STRING[1]

RUN ClearScreen

PRINT "Remaining balance on a Loan”
PRINT '============================="
PRINT

INPUT “"How much did you borrow? "’ principal

INPUT “"How much is your regular payment? “,regularpay

INPUT “What is the annual interest rate? '’ rate

INPUT "How many payments do you make a year? '",paymentsperyear
INPUT “"How many payments have you made? ‘',paymentsmade

rate: = rate/paymentsperyear/100

FOR count: =1 TO paymentsmade
rate1: = INT(principal*rate*100 + .5)/100
rate2: =regularpay-rate1
principal: = principal-rate2

NEXT count

PRINT

RUN Printline

PRINT "Your remaining balance is: '’
RUN MakeltPretty(principal)

RUN Printline

RUN YesOrNo(response)

IF response= "Y' OR response = "y’" THEN
RUN balance

ENDIF

END

PROCEDURE BorrowingCost
DIM pay4,pay5,cost,rate1,rate2,costofborrowing:REAL
DIM principal,years,rate,pay:REAL
DIM numofpayments,months,payperyear,count:INTEGER
DIM response:STRING[1]

160

RUN ClearScreen

PRINT '"Cost of Borrowing?”
PRINT '===========z======"
PRINT

INPUT "How much do you hope to borrow? " principal

INPUT “What is the term of the loan (Years, Months)? "“,years

,months

INPUT ""What is the annual interest rate? ‘' rate

INPUT "How many payments will you be making each year? '‘,payperyear

rate: =rate/payperyear/100

years: = (years* 12 + months)/12
pay3:=1/(1 + rate)!(payperyear*years)
pay4: = principal*rate/(1-pay3)

pay4: =INT(pay4*100 +.5)/100

pay5: = principal

cost: =0

numofpayments: = payperyear*years

FOR count: =1 TO numofpayments
rate1: = INT(pay5*rate*100 + .5)/100
rate2: = pay4-rate1
pay5: = pay5-rate2
cost: = cost + pay4

NEXT count

cost: = cost + pay5
costofborrowing: = cost-principal

PRINT

RUN Printline

PRINT ‘Regular Payments: ';

RUN MakeitPretty(pay4)

PRINT ""Total Payments: “’;

RUN MakeitPretty(cost)

PRINT “Cost of Borrowing: ’’;

RUN MakeitPretty(costofborrowing)
RUN Printliine

PRINT

RUN YesOrNo(response)
IF response="Y" OR response ="'y’ THEN
RUN BorrowingCost

ENDIF
END

161

SAMPLE PROGRAM TWO—
BLACKJACK GAME

PROCEDURE blkjak

TYPE c=cards(52),cardnumber:INTEGER

DIM deck:c

TYPE dealer=ccount,acecount,showcard:INTEGER; bjack:BOOLEAN;
holecard$:STRING[20]

TYPE player=ccnt,acecnt,card1,card2,doublecount(3):INTEGER;
bj:BOOLEAN; name$,card$(3):STRING[20]

DIM d:dealer; p:player

DIM balance,startbalance,wager,i,temp,bet(3):INTEGER

DIM card:STRING[20]; reply:STRING[1]

DIM score:REAL

temp=RND(-(VAL(RIGHT$(DATES$,2))))

FOR i=1 TO 52
deck.cards(i)=i-1

NEXT i

deck.cardnumber=52

PRINT

PRINT “***** Las Vegas Blackjack ***** "

PRINT

REPEAT

INPUT ""What is your name? ’,p.name$
p-name$=TRIM$(p.name$)

UNTIL p.name$< > """

IF LEFT$(p.name$,1)>= ""a’* AND LEFT$(p.name$,1)<="z" THEN
p-name$=CHRS$(ASC(p.name$)-$20)+MID$(p.name$,2,255)

ENDIF

LOOP
INPUT ""Do you want a list of the rules (Y/N)? “,reply

IF reply< > "N’ THEN
PRINT
PRINT “The rules of this casino are as follows..."”’

PRINT “ > BlackJack pays 3 to 2.”

PRINT "’ > Pairs may be split.”

PRINT " > You only get one card on each split ace.”
PRINT ” > You may double down on a split pair.””
PRINT ” > You do not lose a tie hand.”

PRINT " > Dealer hits 16, stands on all 17’s.”’

PRINT “ > Wagers are 1 to 500 dollars.”

PRINT " > Type Return to draw a card”’

PRINT " > Type S to stand with your present cards.’’
PRINT " > Type D to go down for doubles. "’
PRINT ” > Type X to split your pairs.””

PRINT ““ > Bet O dollars to terminate a game.”

PRINT ""* Good Luck * "
ENDIF

162

PRINT
* PRINT ""This game started at ’; RIGHT$(DATES,8)
startbalance = RND(1000) + 50
balance = startbalance
PRINT ""Your bankroll for this game is ’; balance; "’ dollars.”’
LOOP
IF deck.cardnumber > =49 THEN
RUN shuffle(deck)
ENDIF
PRINT
LOOP
INPUT ""Wager? ’‘,wager
EXITIF wager> =0 AND wager< =500 THEN ENDEXIT
PRINT "House limits are between 1 and 500 dollars.”
ENDLOOP
IF wager< >0 THEN
p.ccnt=0 \ p.acecnt=0
d.ccount=0 “d.acecount=0
RUN Draw(deck,p.ccnt,p.acecnt,p.card1,p.card$(1))
RUN Draw(deck,d.ccount,d.acecount,d.showcard,card)
PRINT “‘Dealer shows:’’; TAB(20); card
RUN Draw(deck,p.ccnt,p.acecnt,p.card2,p.card$(2))
PRINT p.name$; " has: ’; TAB(20); p.card$(1); , *’; p.card$(2)
RUN Draw(deck,d.ccount,d.acecount,temp,d.holecard$)
p.bj=p.ccnt=21
d.bjack =d.ccount = 21
IF d.showcard =11 THEN
RUN ibet(d,p,balance,wager)
ENDIF
IF d.bjack THEN
PRINT ""Dealer has BlackJack. "’
ELSE
LOOP
INPUT reply
EXITIF p.card1 =p.card2 AND reply = "X"* THEN ENDEXIT
EXITIF SUBSTR(reply, 'SDX"')< >0 THEN ENDEXIT
PRINT “Invalid request—retry.”’
ENDLOOP
IF reply="""0OR reply="D” THEN
RUN playermove(deck,p,reply,wager,p.ccnt)

p.bj=FALSE
ENDIF
IF reply="X"" THEN
FORi=1TO 2

bet(i) = wager
p.doublecount(i) = p.card1
IF p.card1 =11 THEN p.acecnt=1

ENDIF
RUN Draw(deck,p.doublecount(i),p.acecnt,temp,card)
PRINT ""Hand #"';i; " s p-card$(i); *, *’; card
IF p.card1 < >11 THEN

LOOP

163

INPUT reply
EXITIF SUBSTR(reply, ’'SD"’)< >0 THEN ENDEXIT
PRINT “Invalid request—retry.”’
ENDLOOP
ENDIF
RUN playermove(deck,p,reply,bet(i),p.doublecount(i))
NEXT i
RUN dealermove(deck,d,p)
FORi=1TO 2
PRINT “Hand #°'; i
RUN winloss(d,p,p.doublecount(i),bet(i),balance)
NEXT i
ENDIF
ENDIF
IF reply< > ""X"" THEN
IF p.bj THEN
PRINT p.name$; "’ has BlackJack. "’
wager = 1.5*wager
ENDIF
RUN dealermove(deck,d,p)
RUN winloss(d,p,p.ccnt,wager,balance)
ENDIF
ENDIF
EXITIF wager =0 THEN ENDEXIT
ENDLOOP
IF balance <0 THEN
PRINT p.name$; " owes the casino ’’; -(balance); "’ dollars.”’
ENDIF
score = balance-startbalance
RUN topscores(’’ Blackjack **,"won’’,score, ’dollars’’,score,TRUE)
INPUT “New game (Y/N)? " reply
EXITIF reply = "N’ THEN ENDEXIT
ENDLOOP
END

PROCEDURE dealermove

TYPE c =cards(52),cardnumber:INTEGER

TYPE dealer = ccount,acecount,showcard:INTEGER; bjack:BOOLEAN;
holecard$:STRING[20]

TYPE player = ccnt,acecnt,card1,card2,doublecount(3):INTEGER; bj
:BOOLEAN; name$,card$(3):STRING[20]

PARAM deck:c; d:dealer; p:player

DIM temp:INTEGER; card:STRING[20]

PRINT ‘Dealer hole card ’’; d.holecard$

WHILE d.ccount<17 AND NOT(p.bj) AND p.ccnt< =21 DO
RUN Draw(deck,d.ccount,d.acecount,temp,card)
PRINT “Dealer hits '’; card

ENDWHILE

IF d.ccount>21 THEN
PRINT “‘Dealer Busts.’’

ENDIF

END

164

PROCEDURE winloss
TYPE dealer = ccount,acecount,showcard:INTEGER; bjack:BOOLEAN;
holecard$:STRING[20]
TYPE player = ccnt,acecnt,card1,card2,doublecount(3):INTEGER; bj
:BOOLEAN; name$,card$(3):STRING[20]
PARAM d:dealer; p:player; count,wager,balance:INTEGER

IF NOT(p.bj) AND NOT(d.bjack) AND count< =21 AND d.ccount< =21 THEN
PRINT p.name$; ‘’s count="’; count; ', Dealer’s counts’’; d.ccount
ENDIF

IF d.bjack AND NOT(p.bj) OR count>21 OR count<d.ccount AND d.ccount< 22
THEN |
balance = balance-wager

PRINT ""Dealer wins this hand — Bankroll = ‘‘; balance; "’ dollars.”’
ELSE
IF count=d.ccount AND count<22 THEN
PRINT “This hand is a tie — Bankroll= '’; balance; '’ dollars.’’
ELSE
balance = balance + wager
PRINT p.name$; "’ wins this hand — Bankroll = "’; balance; "’ dollars."”’
ENDIF
ENDIF
END

PROCEDURE playermove
TYPE c =cards(52),cardnumber:INTEGER
TYPE player = ccnt,acecnt,card1,card2,doublecount(3):INTEGER; bj
:BOOLEAN; name$,card$(3):STRING[20]
PARAM deck:c; p:player; reply:STRING[1]; wager,count:INTEGER
DIM temp:INTEGER; card:STRING[20]

IF reply="D"" THEN
RUN Draw(deck,count,p.acecnt,temp,card)
wager = 2*wager
PRINT p.name$; "’ doubles down *’; card
IF count>22 THEN PRINT p.name$; "’ busts.”’
ENDIF
END
ENDIF
REPEAT
RUN Draw(deck,count,p.acecnt,temp,card)
PRINT p.name$; "’ hits ’; card
IF count>21 THEN
PRINT p.name$; * Busts.”
END
ENDIF
LOOP
INPUT reply
EXITIF SUBSTR(reply, ’S"’)< >0 THEN ENDEXIT
PRINT “Invalid request—retry.”’
ENDLOOP
UNTIL reply="S”
END

165

PROCEDURE ibet
TYPE dealer = ccount,acecount,showcard:INTEGER; bjack:BOOLEAN;
holecard$:STRING[20]
TYPE player = ccnt,acecnt,card1,card2,doublecount(3):INTEGER; bj
:BOOLEAN; name$,card$(3):STRING[20]
PARAM d:dealer; p:player; balance,wager:INTEGER
DIM reply:STRING[1]

LOOP
INPUT “Insurance bet (Y or N)? “,reply
EXITIF SUBSTR(reply, 'YN"')< >0 THEN ENDEXIT
ENDLOOP
IF d.bjack THEN
IF reply="Y" THEN
balance = balance + wager
PRINT p.name$; "’ wins insurance bet of '’; wager; "' dollars.”’
ENDIF
ELSE
IF reply = 'Y’ THEN
balance = balance-.5*wager
PRINT "“Dealer does not have BlackJack."”

PRINT p.name$; "' loses insurance bet of ’; .5"wager; "' dollars.”’
ENDIF
PRINT "Hand continues; enter requests as usual.””
ENDIF
END

PROCEDURE draw
TYPE d = cards(52),cardnumber:INTEGER
PARAM deck:d; ccount,acecount,cardvalue:INTEGER
PARAM card$:STRING[20]
DIM r,s:INTEGER

IF deck.cardnumber > =52 THEN
RUN SHUFFLE(deck)
ENDIF
cardvalue = deck.cards(deck.cardnumber)
deck.cardnumber = deck.cardnumber + 1
s = cardvalue/13
r=MOD(cardvalue,13)
cardvalue=r+1
IF cardvalue >10 THEN cardvalue=10
ENDIF

166

IF cardvalue =1 THEN cardvalue=11
ENDIF
FORiI=0TOr
READ rank$
NEXT i
RESTORE 100
FORIi=0TO s
READ suit$
NEXT i
card$ =rank$ + ' of '’ + suit$
ccount = ccount + cardvalue
IF cardvalue =11 THEN acecount=acecount+1 . ENDIF
WHILE ccount>21 AND acecount>0 DO
acecount = acecount-1
ccount=ccount-10
ENDWHILE
END
DATA “"Ace’’,”"Two’’,"Three’’,”’Four’’
DATA “Five”,”’Six"’,”"Seven”’,"’Eight "’
DATA “Nine”,”Ten"’,”’Jack’’,””Queen’’,”’King "’
100 DATA ‘‘Spades’’,'Hearts’’,”’Clubs ‘', ’‘Diamonds "’

PROCEDURE shuffle
TYPE d = cards(52),cardnumber:INTEGER
PARAM deck:d
DIM i,j,delay,temp:INTEGER

PRINT "** Dealer Reshuffles ** "
FOR delay=1 TO INT(RND(10)) + 1
FORi=1TO 52
j=RND(51)+ 1
temp =deck.cards(i)
deck.cards(i) = deck.cards(j)
deck.cards(j) =temp
NEXT i
NEXT delay
deck.cardnumber =1
END

167

168

PART Hi

0S-9 commands explained

Welcome to The Official BASIC09 Tour Guide, Part {ll. Here we'll
present the entire set of OS-9 system utilities. You can use them from
BASIC09 through the CHAIN or SHELL statements described in
Chapter Three. Each section shows several sample command lines
and where practical, a sample run. The commands are listed in
alphabetical order to make your life easy.

ATTR

ATTR examines or changes the security attributes of an OS-9
file. It uses the following abbreviations for the attributes.

d = Directory File

s = non-Sharable file

r = Read permit to owner

w = Write permit to owner

e = Execute permit to owner

pr = Read permit to public

pw = Write permit to public

pe = Execute permit to public
SAMPLES

attr myfile -pr -pw r w <RETURN >
attr sexy_ file r w e pr pw pe <RETURN >

attr mydata <RETURN >
-S-Wr-wr

169

BACKUP

BACKUP copies all data from one disk to another. It makes a
sector by sector copy and pays no attention to file structure. When
copying disks, you must make sure that the source and destination
disks have the same format. The disks must have the same number
of tracks and be initialized to the same density, etc.

BACKUP expects you to give it two device names. If you omit
them, it assumes a copy from device /d0 to /d1. If you leave off the
second device number, BACKUP prompts you for a single drive copy.

BACKUP’s options include:

E = exit on read error

S = print single drive prompt messages

-V = do not verify

#nK = use thousand bytes of memory
SAMPLES:

backup /d1 /d3 <RETURN >
backup /d0 #20K <RETURN >
backup -v <RETURN >

TYPICAL PROMPTING SEQUENCE:
0S9: backup <RETURN >

Ready to BACKUP from /d0 to /d1 ?: y
MYDISK is being scratched

OK?:y

Number of sectors copied: $04FA
Verify pass

Number of sectors verified: $04FA
089:

BUILD

BUILD lets you enter short text files from the keyboard. The stan-
dard input — your terminal — is copied to the path you specify.

BUILD opens a path to the file or device you specify and then
prompts you with a question mark, “?”".

BUILD exits and returns to OS-9 when you enter a carriage return
as the first character in a line.

170

SAMPLES:
build great__procedure <RETURN >
build /p <RETURN >
build <mytext /t2 <RETURN >
TYPICAL SEQUENCE:
0S89: build a_message <RETURN >
Good Morning <RETURN >
Welcome to 0S-9! <RETURN >
<RETURN >
0S9: list a__message <RETURN >

Good Morning
Welcome to 0S-9!

0S9:

CHD changes the working data directory. It is an internal SHELL
command. OS-9 often automatically looks in the working data direc-

tory to find text files, programs and other data.

CHX changes the working execution directory. It also is an in-
ternal SHELL command. OS-9 usually looks in the working execu-
tion directory for files that contain code that it can load and run.
Because the working execution directory is almost always the

"CMDS " directory, CHX is not used nearly as often as CHD.

SAMPLES:

chd /d1/sample__programs <RETURN >

chd .. <RETURN >

chx ../lemds <RETURN >
chx /d1/basic <RETURN >

TYPICAL SEQUENCE:

089: chd /d1/BOOK <RETURN >
089: dir <RETURN>

Directory of . 14:57:55

dict Chaptt1 0S9Commands
Chapt13 Chapt12 Keywords2
Printit Chapti4 Keywords1

171

filefix
SCRATCHO3

CHD

COBBLER

COPY

COBBLER creates a file named “OS9Boot”’ on a disk loaded
in the device named in the command line. The file contains the
modules which were loaded into memory during the last boot. COB-
BLER is used when you are making a new customized system disk.

COBBLER may be used only with Level One systems. Level Two
systems must use the utility “OS9Gen” to create bootstrap files.

COBBLER expects a contiguous block of disk storage large
enough to hold the boot file. You should use freshly formatted disks
with it.

SAMPLE:

0S9: cobbler /d1 <RETURN>

DATE

COPY copies data from the first file or device named to the
second.

COPY expects that the first file exists. It creates the second path
automatically. COPY transfers data in large blocks until it receives
and end-of-file signal from the input file.

COPY accepts two modifiers in the command line. The *‘-s”” op-
tion lets you perform a single drive copy. With this option, COPY
prompts you when you should change disks. COPY also allows you
to use the SHELL’s memory size modifier. You’ll save time as well
as wear and tear on your disk drives when you give copy a lot of
memory to use.

SAMPLES:

0S9: copy myfile yourfile #15K <RETURN >
089: copy /dO/cmds/dir /d1/cmds/dir

TYPICAL SINGLE DRIVE SEQUENCE

0S89: copy myfile yourfile -s #20K <RETURN >
Ready DESTINATION, hit C to continue: ¢
Ready SOURCE, hit C to continue: ¢

Ready DESTINATION, hit C to continue: ¢

DATE displays the current system date on your terminal. You
must have first run the "SETIME ' command for the time and date
to be correct.

172

DATE also displays the time if you use its “‘t"’ option.
SAMPLES:

0S9: date <RETURN >
0S9: date t>/p <RETURN>

TYPICAL SEQUENCE:
0S9: date t

March 6, 1983 15:25:40

DCHECK

DCHECK is used to check a diskette for flaws. It checks the
general integrity of the linkage between your directories and files.
DCHECK also spots sectors on a disk that have been marked as
allocated but in fact are not associated with a file.

DCHECK expects the name of a disk device as a parameter.

DCHECK allows six options in the command line:

-w = < path> pathlist to directory for work files

-p print pathlists for questionable clusters
-m save allocation map work files
-b suppress listing of unused clusters
-s display count of files and directories only
-0 print DCHECK’s valid options

SAMPLE:

0S9: dcheck /d1 <RETURN >
TYPICAL SEQUENCE:
0S89: dcheck /d1 <RETURN >

Volume—""The.Book '’ on device /d1

$009A bytes in allocation map

1 sector per cluster

$0004FA total sectors on media

Sector $000002 is start of root directory FD

$0010 Sectors used for id, allocation map and root directory
Building allocation map file...

Checking allocation map file...

“The.Book’’ file structure is intact

1 directory
11 files

173

DEL

DEL deletes file(s) named in the command line. You must have
-write permission for a file before you may delete it.

DEL allows one option, -x. This option tells OS-9 to look for the
file in the current execution directory.

DEL may not be used to delete directory files unless their type
is changed to non-directory. It’s better to use DELDIR for this.

SAMPLES:

0S9: del myprogram hisprogram <RETURN >
0S9: del /d1/BOOK/Chapt2 <RETURN >

TYPICAL SEQUENCE:
0S9: dir /d1 <RETURN>

Directory of /d1 15:46:57
myfile hisfile

0S9: del /d1/myfile <RETURN >
0S9: dir /d1 <RETURN>

Directory of /d1 15:47:55
hisfile

DIR

DIR displays a formatted listing of the files in a directory on your
terminal.

DIR allows two options on the command line. The ‘“x’’ option
lists the current execution directory. The ‘e’ option gives you a com-
plete description of all files. It shows you the size, address, owner,

permissions, and the date and time the file was last modified.

SAMPLES:

089: dir <RETURN >

089: dir x <RETURN >

0S89: dir x e <RETURN >

0S9: dir /d1/basic__programs <RETURN >
0S9: dir /d1/basic__listings e <RETURN >

174

DISPLAY

DISPLAY is used to send special characters such as cursor or
screen control codes to your terminal or printer. It lets you send
characters that cannot be ECHOed.

DISPLAY converts the hexadecimal number you enter to ASCII
and echos it to the standard output device.

DISPLAY accepts one or more hexadecimal numbers.
SAMPLES:

0S9: display 0C 1F 02 7F <RETURN>
0S9: display 15 >/p <RETURN>

TYPICAL SEQUENCE:

089: display 41 42 43 44 45 46 47 <RETURN>
ABCDEFG

DSAVE

DSAVE creates a procedure file that lets you copy all files from
a directory or device at once.

DSAVE automatically writes copy commands to copy files from
the current data directory to the directory specified in the command
line. These commands go to the standard output device. If DSAVE
encounters a directory, it automatically generates a MAKDIR com-
mand and changes the working data directory.

DSAVE accepts six options in the command line:

-b make output disk a system disk and use
source disk’s “OS9Boot "’ file.

-b=<path> same as ""-b’’ except use ""path’’ as
source for “OS9Boot "’ file.

-i indent for directory level
-l do not process directories below the current level
-m do not include MAKDIR commands in procedure file

-s <integer> set copy size parameter to <integer> K
TYPICAL SEQUENCE:

0S9: chd /d1 <RETURN>

0S9: dsave /d1 >/d0/makecopy <RETURN >
0S89: chd /d1 <RETURN>

0S9: /dO/makecopy <RETURN >

175

DUMP.

Addr
0000
0010
0020
0030
0040
0050

ECHO

23
6973
616D
7768
2069
5343
7022

DUMP sends a formatted display of the data from a path to the
standard output device. It gives you a way to examine the contents
of files that do not contain text.

DUMP displays 16 bytes of data on each line. Both the hexa-
decimal and ASCII value are printed. Data bytes that are non-printable
in ASCII are represented by periods.

DUMP displays addresses relative to the beginning of a file.
Since memory modules are stored in files in exactly the same form
that they exist in memory, the addresses displayed by DUMP corres-
pond to relative load addresses within a memory module.

SAMPLES:
0S9: dump <RETURN> (displays keyboard)

089: dump myfile >/p <RETURN >
089: dump ourfile <RETURN>

45 67 89 AB CD EF 02468ACE
2069 7320 6120 736D 616C 6C20 This is a small

706C 6520 7465 7874 2066 696C example text file
6963 6820 6973 2070 7269 6E74 which is printed
6E20 6269 6E61 7279 2061 6E64 in binary and

4949 2062 7920 7468 6520 2264 ASCIl by the

2063 6F6D 6D61 6E64 2EOD “dump” command..

ECHO sends messages to the standard output path. It is often
used in procedure files to send a message to the operator.

ECHO should not be used to echo any of the standard punctua-
tion characters used by the SHELL such as <, >, !, &, etc.

SAMPLES:

0S9: echo >/t1 Let’s go to lunch John <RETURN >
0S9: echo >/term ** WARNING ** Scratching disk

TYPICAL SEQUENCE:

0S89: echo System will be shut down in 10 minutes

System will be shut down in 10 minutes

176

EX lets you execute another program from the SHELL without
starting a new process to save system memory.

Basically, the Shell runs the command EX and then zaps
itself. For this reason, EX must always be the last command on a

SHELL input line because any commands following it will never be
processed.

SAMPLES:

089: ex BASIC09 <RETURN >

FORMAT initializes, verifies, and sets up the initial file structure
on a new or recycled disk. FORMAT must be run on all new disks
before they can be used by an OS-9 system.

FORMAT reads a set of default values for the disk from the device
descriptor. However, you may FORMAT a disk differently by sup-
plying options in the comand line. Even though many formats are
possible, you may be limited by the capabilities of your disk con-
troller and drives. Consult Microware’s OS-9 Operating System
Users Manual to learn the details of FORMAT’s operation.

FORMAT’s command line options for floppy disks are:

S = single density
D = double density
1 = single sided

2 = double sided
R = ready

Other options include:

‘number’ = number of tracks in decimal

:number: = number of sector interleave value

“name’’ = disk name (32 characters maximum)
SAMPLES:

0S9: format /d1 2 D '"database’’ ‘77’ <RETURN>
0S9: format /d1 S 1 <RETURN >

177

EX

FORMAT

FREE

TYPICAL SEQUENCE:
0S9: format /d1
FORMAT 1.1

TABLE OF FORMAT VARIABLES

Recording Format: MFM <- density: FM =sgl MFM =dbl
Track density in TPI: 48 <- some 5" disks use 96 TPI
Number of Cylinders: 77 <- 77 for 8", 35/40/80 for 5~
Number of Surfaces: 1 <- 1 or 2 sides
Sector Interleave Offset: 3 <- set by manufacturer
Disk type: 8 <- 5, 8, or HARD
Sectors/Track on TRK 0, Side O: 16 <- set by manufacturer
Sectors/Track: 28 <- set by manufacturer

Formatting on drive /d1

Y (yes), n (no), or q (quit) y <- answer: y to format, n to
Ready: Y change table, or q to stop
Disk Name: Documentation < - enter up to 32 characters

(track numbers are printed here)

GOOD SECTOR COUNT = $860

IDENT

FREE reports the number of sectors of free space remaining on
a disk. FREE also tells you the name of the disk, the date the disk
was created and the cluster size.

FREE reports the cluster size so that you can determine how
many new files will fit on a disk. For example, some disk drives use
8 sectors per cluster. On these drives — if FREE reports 32 free sec-
tors — you only have room for four new files.

SAMPLE RUN:

0S9: free /d1 <RETURN>

Documentation created on: 82/08/26
Capacity: 1,274 sectors (1-sector clusters)
1,070 free sectors, largest block 940 sectors

IDENT displays the header information from an OS-9 memory
module. It prints the module size and its CRC. If the module is a

178

program or device driver module, IDENT reports the execution off-
set and the permanent data storage requirement.

IDENT prints the type/language and attribute/revision bytes on
one line and interprets them on the next. If IDENT is run on a disk
file, it reports on each module in the file.

IDENT has three command line options:

-v = do not verify module CRC
-s = use short form
-m = assume that path is a module in memory

SAMPLE RUN:

08S9: ident -m ident

Header for: ident

Module size: $06AS5 #1701
Module CRC: $1CE78A (Good)
Hdr parity: $8B

Exec. off: $0222 #546
Data Size: $0CA1 #3233
Edition: $05 #5
Ty/La At/Rv: $11 $81

Prog mod, 6809 obj, re-en

KILL sends an abort signal to the process having the process
ID number named in the command line. You cannot KILL a process
unless you have the same user ID as the user that started the process.

SAMPLES:

0S9: kill 5 <RETURN >
089: kill 12 <RETURN >

LINK locks a previously loaded module into memory. On Level
Two systems it also maps the named module into your address space.

LINK increments the link count of a module each time it is run.
SAMPLES:

089: link edit <RETURN >
0S9: link basic09 <RETURN >

179

KILL

LINK

LIST

LIST copies text lines from all input files (paths) given in the com-
mand line to the standard output path. It is used to examine or print
text files.

LIST runs until it receives an end-of-file signal from the last input
path.

SAMPLES:

089: list /dO/startup >/p <RETURN >
089: list /d1/BOOK/chapt14 /d1/BOOK/Chapt15 < RETURN>
08S9: list /term >/p

LOAD
LOAD opens a file and loads all its modules into memory. It then
adds the name of the modules loaded into OS9’s module directory.
If a module is loaded that is already in memory, LOAD will keep the
module with the highest revision number.
SAMPLE:
0S89: load Basic09 <RETURN>
LOGIN

LOGIN provides security for timesharing systems. TSMON,
0S-9’s timesharing monitor, calls it automatically.

LOGIN requests a user name, and a password and checks them
against a validation file. You have three chances to answer each
question correctly before the process is aborted.

LOGIN automatically sets up your user number, working
execution directory, working data directory, and executes a program
specified in the password file.

LOGIN’s validation file is complex. See your OS-9 Operating
System Users Manual for complete details.

SAMPLE RUN:
089: login <RETURN >
0S-9 Level 1 Timesharing System Version 1.2 83/03/07 21:25:28
User Name? michele <RETURN >
Password? tiffy <RETURN >

Process #04 logged 83/03/07 21:26:05
Welcome!

180

MAKDIR creates a new directory file on a disk. The name in
the pathlist is used as the name of the directory.

MAKDIR will not create a directory for you unless you have write
permission for its parent directory. Many programmers like to
capitalize the names of directories to make them stand out from
file names.

SAMPLES:
0S9: makdir /d1/BOOK <RETURN>

0S9: makdir HOMEWORK <RETURN >
089: makdir ../MUSIC__LIBRARY <RETURN >

MAKDIR

MDIR

MDIR displays the names of modules residing in memory.

MDIR has one command line option, “‘e”’, which lets you list the
physical address, size, type, revision level, and user count of each
module. MDIR prints this information in hexadecimal form.

MDIR also displays the extended physical address of a module
when used on a Level Il system.

SAMPLE RUN:
089: mdir <RETURN >

Module Directory at 21:42:16

0S9p2 Init Boot 0S9 loman
RBF SCF Sysgo ACIA PIA
TERM T1 P1 P Clock
Shell G68

MERGE

MERGE copies the multiple input files named in your command
line to the standard output path. Merge lets you combine several input
files into one output file by redirecting the standard output path.

MERGE does no output line editing. For example, it does not
automatically insert line feeds after carriage returns, etc.

SAMPLES:

0S89: merge file1 file2 file3 > allfiles < RETURN >
0S9: merge original__file new__file >/p

181

MFREE

MFREE displays a list of memory areas available for use. It
reports both the address and size of each free memory biock. On
a Level | system MFREE reports the number of 256-byte pages avail-
able.

MFREE also shows the block number, physical beginning and
ending addresses, and size of each memory area when run on Level
Il systems. The Level |l size is reported as both the number of blocks
and the number of free (K)ilobytes available.

SAMPLE RUN:

0S9: mfree <RETURN >

Address pages
800- 8FF 1
BOO-AEFF 164

B100-B1FF 1

Total pages free = 166

OS9GEN

0S9Gen creates and links the **‘OS9Boot” file which must be
on any disk used to “‘boot’”’ the system. You may use it to simply make
a copy of an existing boot file, to add modules to an existing boot file,
or to create an entirely new boot file.

0S9Gen receives the name of the device where the OS9Boot
file is being installed from the command line. It copies a list of files
to a file on that device, names it ““OS9Boot’’, and links to it.

0S9Gen’s operation is quite complex and well beyond the scope
of a beginner. If you're interested in how it works, consult the detail-
ed description given in the OS-9 Users Manual.

SAMPLES:
0S9: os9gen /d1 <RETURN > ;* run os9gen
0S9: /d0/os9boot <RETURN > ;* file we’re installing
0S9: <ESCAPE > ;* end of file
0S9: os9gen /d1 <RETURN >
0S9: /d0/os9boot <RETURN > ;* first file
0S9: /d1/new__video__drivers <RETURN > ;* second file
089: /d1/new_modem__drivers <RETURN > ;¥ yet another file

0S9: <ESCAPE >

182

PRINTERR

PRINTERR displays English language error messages from the
file /d0/SYS/errmsg. It replaces the standard OS-9 error reporting
routine which only prints error code numbers.

PRINTERR installs itself permanently the first time you run it and
it may not be undone. The OS-9 Users Manual shows you how to
change the existing error message file or install your own.

SAMPLE:

0S9: printerr <RETURN >

PROCS

PROCS displays the list of processes currently running on your
system.

PROCS only lists the processes you own unless you ask to see
all by using the *‘e’” option in the command line

PROCS shows you the user and process ID numbers, state, prior-
ity, memory size in 256-byte pages, the primary program module, and
the standard input path for the process when running on Level |
systems.

PROCS gives the process ID number, ID number of the parent
process, user index, process priority, memory size in 256-byte pages,
current stack pointer address, and the primary module name on Level
Il systems.

SAMPLES:

0S9: procs <RETURN>
0S9: procs e <RETURN>

RENAME

RENAME changes the name of afile. You must have write per-
mission for a file before you can rename it.

RENAME may not be used to change the name of a device or

the name of the current data or parent directories, ““.”" or
SAMPLE:

0S9: rename outstanding for_ sure <RETURN >
0S9: rename /d1/TEXT/speech soapbox <RETURN >

183

SAVE

SAVE creates a new file and writes a copy of the memory
module(s) named in the command line. These modules must exist
in the module directory when you run SAVE. This command is often
used to save a copy of a program module after it has been “‘patched’’.

SAVE uses the current data directory as its default directory.

SAMPLES:

0S9: save/d0/CMDS/filefix filefix <RETURN >
0S9: save /dO/CMDS/math__routines add sub mult div <RETURN >

SETIME
SETIME sets the date and time and activates the system’s real
time clock. You may enter input to SETIME from the command line
or you may answer a prompt.
SETIME must be run before you can do any multitasking. If you
have a battery backed up clock in your system, you need only run
SETIME with the year as the parameter. It will get the rest of its infor-
mation from the clock.
SAMPLES:
0S9: setime 83,03,08,2143 <RETURN>
0S9: setime 830308 214535 <RETURN >
0S9: setime 83 <RETURN>
SLEEP

SLEEP puts a process to sleep for the requested number of ticks.
You may use it to generate time delays or to ‘‘break up jobs that are
CPU intensive. The length of a tick depends upon which system you
are running. The typical tick on a Level One system lasts 1/10 se-
cond. With Level Two most systems use a 1/100 second tick.

SAMPLE:
0S9: sleep 10 <RETURN >

184

SETPR is a built in SHELL command that changes the CPU
priority of a process. You may only use it with a process that has
your user |ID number.

SETPR'’s priorities range from 1 (the lowest) to 255.

SAMPLE:

0S9:setpr 4 200 <RETURN >

SETPR

SHELL

SHELL is the command interpreter that reads data from the stan-
dard input path — usually your keyboard — and interprets it as a se-
guence of commands.

SHELL'’s technical specifications and syntax are explained in
great detail in Microware’s OS-9 Users Manual.

TEE

TEE copies all text lines from the standard input path to the stan-
dard output path and to any other paths named in the command line.

TEE is a filter that may be used with a pipeline to simultaneous-
ly send a listing to your terminal, printer and a disk file — or any number
of destinations.

SAMPLES:

0S9: dir ! tee /p /d1/WORKTEXT/scratch <RETURN >

0S9: echo Let’s go to lunch ! tee /t1 /12 /t3 <RETURN>

185

TMODE

TMODE displays or changes the operating parameters of your
terminal. If you do not give TMODE arguments in the command line,
it lists the current state of each parameter.

TMODE processes parameters named in the command line. It
works on the standard input path unless an optional path is named
with a period, ‘., and a number in the command line.

TMODE's parameters include:

PARAMETER MEANING TO TERMINAL:
upc Upper Case Only
-upc Upper and Lower Case
bsb Erase on Backspace
-bsb Does Not Erase on Backspace
bsl Backspace over line
-bsl No Backspace Over Line (use linefeed)
echo Echo Input characters to terminal
-echo Do Not Echo Characters
If Issue line feed with each return
-If Do Not send line feed with return
pause Stop when screen full
-pause Do not stop when screen full
null=n Issue ‘n"’ nulls after return
pag=n Set video page length to 'n”’ lines
bsp=h Define backspace character as "h”
bse=h Define backspace echo character as "h’’
del=h Define character that deletes a line
bell=h Define bell character
eof=h Define end of file input character
eor=h Define end-of-record input character
type=h Initialize ACIA with "h”’
reprint=h Define reprint line character.
dup=h Define last input line character
psc=h Define pause character
abort=h Define abort character
quit=h Define quit character
xon=h Define character used to resume transmission
xoff=h Define character to suspend transmission
n = decimal number
h = hexadecimal number

SAMPLES:

0S9: tmode -upc -If null=0 pause <RETURN >
0S9: tmode pag =12 pause bsl bsp=8 <RETURN>

186

TSMON

TSMON monitors terminals on timesharing systems. It super-
vises idle terminals and initiates a login sequence when a carriage
return is typed. You may log off the system by sending an end-of-file
character — usually <ESCAPE > — as the first character of a com-
mand line.

SAMPLES:
0S9: tsmon /118 <RETURN >

UNLINK tells OS-9 that you are through with a moduile. If you
are the only user, UNLINK removes the module from the module direc-
tory and gives the memory back to the system. If no other operators
are using the module, UNLINK simply lowers the module’s link count
by one.

WARNING: Never UNLINK a module that you did not LOAD
or LINK to.

SAMPLES:

0S9: unlink program1 program5 program9 <RETURN >

UNLINK

VERIFY

VERIFY checks the module header parity and CRC of all
modules in a file. The modules are read from the standard input path.
Any error messages are sent to Standard error path.

VERIFY’s update, ““U”’, option causes OS9 to copy a module to
the standard output path and compute new values for the header
parity and CRC. VERIFY does not copy the module to standard
output unless you specify this option.

SAMPLES:

0S89: verify <myprogram <RETURN>
Module’s header parity is correct.
Module’s CRC is correct.

089: verify <Oldfile > Newfile u <RETURN >

187

188

PART IV

BASIC09 keywords
explained

Welcome to The Official BASIC09 Tour Guide, Part IV. Here
you’ll find a precise definition of each BASIC09 keyword. We hope
it becomes one of the most useful reference works in your library.

We organized each keyword entry in the same manner to help
you find your answers fast. Each entry classifies the keyword accord-
ing to its function and presents its formal syntax.

The first paragraph following the syntax tells you what to expect
when you execute the keyword, the second tells you what informa-
tion you must provide, and the third explains a typical use of the
keyword.

Where possible, a sample procedure containing the keyword
follows the narrative description. And, in cases where there is a visi-
ble result, we show you a sample run of the procedure. Finally, we
present a list of other BASIC09 keywords related to the word in the
specific entry.

189

ABS

MATH FUNCTION
SYNTAX: ABS(<NUM>)

ABS returns the absolute value of the number or variable in
parentheses. A number’s absolute value is its value without a + or—
sign.

ABS needs one argument, a number or variable of type REAL
or INTEGER.

ABS is used in arithmetic operations when a non-negative result
is needed.

EXAMPLE:

PROCEDURE absdem
(* Sample procedure for ABS *)
DIM number,another _number:REAL

(* First, we’ll print some ABSolute numbers *)
PRINT
PRINT ABS(-476.35),ABS(-.0031459),ABS(798.56)

(* Then, we’ll use ABS in a mathematical expression *)

number: =37

another__number: =59

PRINT

PRINT “The ABSolute value of “; (number-another__number)/2; " is *;
ABS((number-another__number)/2)

PRINT

END

See also: SGN, SQ, VAL

190

ACS

MATH FUNCTION
SYNTAX: ACS(<NUM>)

ACS returns the arcosine of a number of type REAL or INTEGER
in degrees or radians.

ACS needs one argument which is a number or variable of type
INTEGER or REAL.

ACS is used in mathematic formulas to find the inside angles

of aright triangle. The angle is determined by the ratio between the
adjacent side and the hypotenuse.

EXAMPLE:

PROCEDURE acsdem

(* Demonstrate use of ACS trig function *)

(* The angle created by a given ratio between *)
(* the side of a triangle next to the angle *)

(* and the hypotenuse *)

(* Use Degrees *)

DEG

DIM nearside,hypotenuse,ratio:REAL

INPUT "“The length of the side adjacent to the angle? '“,nearside
INPUT ““The length of the hypotenuse? ’’,hypotenuse

ratio: = nearside/hypotenuse

PRINT “The angle between an adjacent side of '’; nearside

PRINT “and a hypotenuse of ’; hypotenuse; " is ’’;
PRINT ACS(ratio); * degrees.”’

PRINT

END

See also: SIN, COS, TAN, ASN, ACS, ATN

191

ADDR

AND

MISCELLANEOUS FUNCTION
SYNTAX: ADDR(<NAME>)

ADDR returns an INTEGER value which is the absolute memory
address of the VARIABLE, ARRAY, or STRUCTURE named in the
parentheses.

ADDR needs only one parameter — the NAME of a VARIABLE,
ARRAY, or STRUCTURE.

EXAMPLE:

PROCEDURE addrdem

(* Demonstrate use of ADDR *)
DIM address,count:INTEGER
DIM sampler:STRING

DIM characterholder:BYTE

(* Assign value to string *)
sampler: = “"The Quick Brown Fox "’

(* Now point directly to STRING in memory *)
address: = ADDR(sampler)

(* Get each character from memory and PRINT it *)
FOR count: =0 TO LEN(sampler)

characterholder: = PEEK(address + count)

PRINT CHR$(characterholder);

NEXT count

PRINT

END

See also: none

BOOLEAN OPERATOR
SYNTAX: <EXPRESSION > AND <EXPRESSION >
AND returns a BOOLEAN value of TRUE or FALSE.
AND needs two arguments written in an expression.
AND is used as a logical math operator in a BOOLEAN expres-

sion. It has a higher precedence than OR, but less precedence than
NOT.

192

EXAMPLE:

PROCEDURE andemo
(* demonstrate use of boolean AND *)
DIM onenumb,twonumb,threenumb:INTEGER

onenumb: =1
twonumb: =2
threenumb: =3

IF onenumb <twonumb AND threenumb >twonumb THEN
PRINT “That’s right, 1<2 and 3>2!"

ELSE

PRINT "Math always was hard for me...”

ENDIF

END

See also: OR, NOT, BOOLEAN, FALSE, TRUE

STRING FUNCTION
SYNTAX: ASC(<STRING >)

ASC returns the ASCII value of the first character of the STRING
in parentheses. This value will always be between 1 and 255.

ASC needs only one parameter — a STRING or STRING
variable.

ASC converts a STRING or STRING variable to its correspond-
ing ASCII decimal number.

EXAMPLE:

PROCEDURE ascdem

(* Demonstrate ASC function *)

(* Convert String or Character to ASCII decimal number *)

DIM characterholder:STRING[1]
DIM count:INTEGER

PRINT

INPUT “Type any character, then <RETURN>: ‘“,characterholder

PRINT "“The ASCII code for the letter ’; characterholder;
PRINT " is "; ASC(characterholder)
END

See also: LEN, SUBSTR

193

ASC

ASN

MATH FUNCTION
SYNTAX: ASN(<NUM>)
ASN returns the arcsine of the number in parentheses. The result
is always a REAL number and is expressed in degrees or radians
— depending on the value of the function flag set by DEG or RAD.

ASN needs one parameter which may be a REAL or INTEGER
number.

ASN is used to determine the angles inside a right triangle.

EXAMPLE:

PROCEDURE asndem

(* Demonstrate ASN function *)

(* The angle created by a certain ratio between *)
(* the side of a triangle opposite the angle and *)
(* the hypotenuse *)

(* Use DEGrees *)

DEG

DIM oppositeside,hypotenuse,ratio:REAL

INPUT “Length of the side opposite the angle? "",oppositeside
INPUT “"How long is the hypotenuse? ‘’,hypotenuse

ratio: = oppositeside/hypotenuse

PRINT "The angle formed in a triangle with an opposite side of
PRINT oppositeside; '* and a hypotenuse of '’; hypotenuse

PRINT “is ’; ASN(ratio); '* degrees.”’

END

See also: SIN, COS, TAN, ACS, ATN

194

MATH FUNCTION
SYNTAX: ATN(<NUM>)

ATN returns the arctangent of the number in parentheses. The
result is a REAL number and it may be expressed in degrees or
radians — depending on the value of the function flag set by DEG
or RAD.

ATN needs one parameter. It may be a REAL or INTEGER
number or a VARIABLE.

ATN is used to calculate an angle inside a right triangle. It is
the opposite of the math function of TAN.

EXAMPLE:
PROCEDURE atndem
(* Demonstrate ATN function *)

(* Determine the angle in a triangle *)
(* given the two sides *)

DIM opposite,adjacent,ratio,angle:REAL
(* Switch BASIC09 to degrees instead of radians *)

DEG

INPUT ‘‘Length of opposite side? ",opposite
INPUT ""Length of adjacent side? "",adjacent

ratio: = opposite/adjacent
angle: = ATN(ratio)

PRINT
PRINT ""Your angle is “’; angle; ** degrees."’
END

See also: TAN, SIN, COS, ASN, ACS

195

ATN

BASE

DIRECTIVE STATEMENT

SYNTAX: BASE 0
BASE 1

BASE determines if the lowest array or data structure index
(subscript) is zero or one.

BASE needs only one argument — a ‘1"’ or a ‘0",

BASE defaults to one and does not affect string operations. The
beginning character of a STRING always has an index of one.

EXAMPLE:

PROCEDURE basedem

(* Demonstrate use of BASE statement *)
(* BASE sets the lowest variable array *)
(* element to zero or one *)

DIM index,anarray(6):INTEGER

(* First let’s show operation in BASE zero *)
BASE 0
(* First initialize the array *)

FOR index:=0TO 5
anarray(index): = index
NEXT index

(* Now print the array *)

PRINT

FOR index:=0TO 5
PRINT anarray(index);
PRINT " *';

NEXT index

PRINT

(* Now print same array using BASE one *)

196

BASE 1

FOR index:=1 TO 6
PRINT anarray(index);
PRINT " "

NEXT index

PRINT

PRINT

PRINT ’Notice that the value of array elements
PRINT ’'does not change when we change the name of
PRINT ""the elements.”’

1

See also: none

TYPE DECLARATION

SYNTAX: DIM <VARIABLE >: BOOLEAN

BOOLEAN is used in DIM and TYPE statements to declare
variables of type BOOLEAN.

BOOLEAN variables return one of two values, either TRUE or
FALSE. They may not be used for numeric computation.

See also: AND, OR, XOR, NOT, TRUE, FALSE

BOOLEAN

BREAK

DEBUG COMMAND
SYNTAX: BREAK <PROCEDURE NAME <
BREAK inserts a breakpoint in the procedure named.
BREAK needs only one argument — the name of a procedure.

BREAK is used with BASIC09’s DEBUG mode. Itis entered as
a command from the keyboard.

See also: STATE

197

BYE

BYTE

CONTROL STATEMENT

SYNTAX: BYE

BYE stops the procedure being run and exits BASIC09. It closes
any open files. It can be dangerous if you have not saved your program
before it is used.

BYE needs no arguments.

BYE is used to return to OS-9.
EXAMPLE:
PROCEDURE byedem
(* Show use of BYE to return to 0S-9 *)
(* operating system from a program *)
PRINT “Let’s return to 0S-9 now."”’
PRINT "“Type ‘BASIC09’ to return.”’
PRINT "“Goodbye!"”’
BYE

See also: PAUSE, END, STOP

TYPE DECLARATION
SYNTAX: DIM <VARIABLE >: : BYTE

BYTE is used in DIM and TYPE statements to declare variables
of type BYTE.

BYTE variables return unsigned whole numbers ranging from
zero to 255. They are stored in one memory location. BYTE variables
need only half the storage used by integers and one-fifth that used
by reals.

See also: INTEGER, REAL, BOOLEAN

198

CHAIN

0S9 SYSTEM CALL
SYNTAX: CHAIN <STRING >

CHAIN exits Basic09 to run an OS-9 program (which can be
another Basic09 program).

CHAIN needs only one argument — a string expression that holds
the name of the OS-9 program and any arguments it requires.

CHAIN is often used to run selected programs from a menu-
driven program.

EXAMPLE:
PROCEDURE chaindem

(* Show use of CHAIN statement *)
(* It is best to use the Shell’s ‘ex’ option *)
(* when you are CHAINing to an 0S-9 program. *)

PRINT “Let’s see what is in our current data directory.”

PRINT ""Notice that when you return from 0S-9, your BASIC09 "
PRINT ““workspace will be empty.”’

PRINT '

PRINT "This happens because you leave BASIC09 completely, use”’
PRINT “OS-9’s Shell to run the DIR utility and then return”’

PRINT ""to BASIC09 again.”

CHAIN "dir ; ex basic09"”

See also: none

CHD

DIRECTIVE STATEMENT,
SYSTEM COMMAND

SYNTAX: CHD STRING
CHD changes the current DATA directory.

CHD needs one argument — a STRING expression which
specifies the pathlist of a directory file.

CHD is explained in detail in Microware’s OS-9 User’s Guide.

See also: CHD

199

CHR

STRING FUNCTION
SYNTAX: CHRS$(<INT>)
CHRS returns the ASCII character represented by an INTEGER
value. In other words, it converts the ASCII code for a character to

the character itself.

CHRS needs one parameter — an INTEGER constant or variable
with a value between 1 and 255.

CHRS is used with the PRINT statement to send special non-
printable control codes to your terminal’s screen or a printer.

EXAMPLE:

PROCEDURE chrdemo

(* demonstrate the use of CHRS *)
DIM a,b,c,d,e,f,g,h,i:BYTE

DIM count:INTEGER

(* assign value to each variable *)

a. =
b:=97
c:=116
d: =61
e:=77
f. =69
9:=79
h: =87
i:=33

(* Then PRINT its character value *)
PRINT CHR$(a); CHR$(b); CHR$(c); CHR$(d); CHRS(e); CHRS(f); CHR$(g); CHRS$(h)
CHRS(i)

(* Or use a loop to set character value *)
FOR count: =65 TO 90

PRINT CHR$(count);

NEXT count

PRINT

END

See also: LEFT$, RIGHTS, MID$, TRIMS, DATES

200

CHX

DIRECTIVE STATEMENT,
SYSTEM COMMAND

SYNTAX: CHX<STRING >
CHX changes the current EXECUTION directory.

CHX needs one argument — a STRING expression which
specifies the pathlist of the directory file.

CHX is explained in detail in Microware’s OS-9 User’s Guide.

EXAMPLE:

PROCEDURE chxdem

(* Show use of CHX statement to change execution *)
(* directory from within a program *)

SHELL "load pxd’’

PRINT 'Your current execution directory is: '’;

SHELL "“pxd”’

PRINT
PRINT “"Now, let’s change it."”’

CHX "'Id0 "’

PRINT "“And, confirm that it has been changed.’’
PRINT

PRINT 'Your current execution directory is now: ’;

SHELL “pxd”

PRINT
PRINT "“"Don’t forget to change it back."”’

See also: CHD

201

CLOSE

CONT

INPUT/OUTPUT STATEMENT
SYNTAX: CLOSE <INTEGER EXP> , <INTEGER EXP>

CLOSE shuts down the path defined by the INTEGER expression
which was previously OPENed or CREATEd when it is no longer
needed.

CLOSE may have several arguments, but each path number
passed must be an integer expression.

CLOSE should always be used when you finish reading or writing
afile. CLOSE may also be used to release non-sharable devices —
a printer for example — to other users.

EXAMPLE:

PROCEDURE closedem

(* Show use of Close statement *)

(* We’ll open a path to the system printer, *)

(* send a short sentence and then Close the path. *)

DIM path:INTEGER

OPEN f#path,”Ip”’

PRINT #path, ‘Hello There"”’
CLOSE #path

See also: CREATE, OPEN

DEBUG MODE COMMAND
SYNTAX: CONT

CONT is used from BASIC09's Debug Mode to continue
execution of a procedure.

CONT needs no arguments and is entered from the terminal.

CONT is sometimes used in conjunction with BREAK to debug
a program.

EXAMPLE:

PROCEDURE contdem
(* Show use of CONT statement from a program *)

202

DIM count:INTEGER

FOR count: =1 TO 10 \ PRINT count; “ NEXT count

PRINT

PRINT

PRINT "“Type CONT to continue this program.”’

PAUSE

PRINT

PRINT "“The program has passed the STOP statement and’’

PRINT ““continues to run.”

PRINT . PRINT

FOR count: =1 TO 10 . PRINT count; “~ NEXT count
o

PRINT \ PRINT \ PRINT ""Goodbye!"”’

See also: BREAK

MATH FUNCTION
SYNTAX: COS(<NUM>)
COS returns the cosine of the specified angle as a REAL number.
The NUM may be in degrees or radians — depending on the flag set
by DEG or RAD.
COS needs one parameter — a REAL or INTEGER number.

COS is used to find the length of one side of a triangle if the other
two sides and an angle are known.

EXAMPLE:

PROCEDURE cosdem
(* Demonstrate the COS function *)

DIM angle:INTEGER

DEG

INPUT “Enter an angle expressed in degrees: "",angle
PRINT "“"The cosine of a "’; angle; "’ degree angle is '’;
PRINT COS(angle)

PRINT

See also: ACS, ATN, SIN, TAN, ASN

203

cos

CREATE

INPUT/OUTPUT STATEMENT
SYNTAX: CREATE <INT VAR>,<STRING EXP> [: <ACCESS MODE >]
<ACCESS MODE> := <MODE> ! <MODE> +
<ACCESS MODE> <MODE>:= WRITE ! UPDATE ! EXEC

CREATE is used to create a new file. When files are created,
they may be set up in the WRITE, UPDATE or EXEC modes.

CREATE needs several arguments — an INTEGER variable, a
STRING expression, and an optional access mode.

CREATE is explained in detail in Chapter 10.

EXAMPLE:

PROCEDURE createdem

(* Show CREATE statement in action *)
(* We’ll Create a file, write something *)
(* to it, read it and finally, delete it *)

DIM file:INTEGER

PRINT “Let’s CREATE a file and put a sentence in it.”
PRINT

CREATE #file, 'demofile ":UPDATE
PRINT #file,"This message is going into a demo file.”’
CLOSE f#file

PRINT ""Now, we’ll use 0S-9’s DIR utility to see if it’s there’””
PRINT “and the LIST utility to view it.”

SHELL “dir”
PRINT
SHELL “list demofile”

PRINT . PRINT “We’re back in BASIC09, so let’s delete"”’
PRINT “‘the file.”

SHELL: “"del demofile’’

See also: WRITE, UPDATE, EXEC, GET, PUT, PRINT

204

INPUT/OUTPUT STATEMENT
SYNTAX: DATA <expression>,{ <expression>}

DATA statements are used to build constant tables within a pro-
gram to be accessed later by READ statements.

DATA uses a list of one or more expressions separated by com-
mas, which can be of any type.

Basic09 is unusual compared to other Basics in that it allows
DATA statements to include expressions and variables.

EXAMPLE:

PROCEDURE datadem
(* Show use of DATA statement *)

DIM word:STRING[16]
DIM count,number:INTEGER

DATA 1,” You ",2,” are ",3," printing ",4," numeric "’
DATA 5, and "',6,’’ string "’,7,’" data.”’

PRINT

FOR count:=1TO 7
READ number
PRINT number;
READ word

PRINT word

NEXT count

PRINT

See also: READ, RESTORE

205

DATA

DATES

DEG

STRING FUNCTION
SYNTAX: DATES "yy/mm/dd <hh:mm:ss>"

DATES$ returns the year, month, and day, including hours,
minutes, and seconds from your system’s clock.

DATES returns a string value which contains the year, month,
day, hours, minutes, and seconds in fixed format.

EXAMPLE:

PROCEDURE datedem

(* print the date *)

DIM dateholder:STRING([17]
dateholder: = DATES$

(* Print the date and time direct *)
PRINT ""Ta da! Today’s date is ... '’; DATES

(* And show that it has also been stored in dateholder *)
PRINT . PRINT dateholder * PRINT

END
See also: CHRS, LEFTS$, RIGHTS$, MIDS$, TRIM$

DIRECTIVE STATEMENT,
SYSTEM COMMAND

SYNTAX: DEG

DEG tells a procedure that angles are being expressed in degrees
when executing SIN, COS, TAN, ACS, ASN, or ATN functions.

DEG needs no arguments. It may be used in a procedure or
typed from the keyboard while in the DEBUG mode.

DEG is used to toggle a procedure’s state from RAD (radians).

EXAMPLE:

PROCEDURE degdem
(* Demonstrate use of DEG statement *)

(* Use Degrees *)
DEG

206

DIM nearside,hypotenuse,ratio:REAL

INPUT ""The length of the side adjacent to the angle? “,nearside

INPUT ""The length of the hypotenuse? "',hypotenuse
ratio: = nearside/hypotenuse

PRINT \ PRINT ““Your angle is ';
PRINT ACS(ratio); " degrees.”
PRINT

END
See also: RAD, SIN, COS, TAN, ACS, ASN

INPUT/OUTPUT STATEMENT
SYNTAX: DELETE <STRING expression>

DELETE does not return a value. DELETE is used to remove
files from a directory. The file is destroyed.

DELETE needs one argument — a string expression.

EXAMPLE::

PROCEDURE deletedem

(* Show DELETE statement in action *)
(* We'll Create a file, write something *)
(* to it, read it and finally, delete it *)

DIM file:INTEGER

PRINT

CREATE #file, 'demofile ":UPDATE

PRINT #file,'This message is going into a dummy file.”’
CLOSE #file

PRINT “We have created a file and written a sentence in it.”’
PRINT “We’ll do a DIR — so you may look for it.”’

PRINT “It’'s named, ‘demofile’."”’

PRINT

SHELL “dir’’
PRINT

PRINT ~ PRINT "Now let’s delete ‘demofile’.’’

PRINT ""And, prove that it is gone.”’
SHELL "‘del demofile”’
SHELL ““dir”

See also: CREATE

207

DELETE

DIM

DECLARATIVE STATEMENT

SYNTAX: DIM <declseq> {;<declseq>}
<decl seq>:= <decl> {,<decl> }[: <type >]
<decl>:= <name >[<subscript>]
<subscript>:=(<const>[,<const>[; <const>]])
<type>:=BYTE|INTEGER |REAL|BOOLEAN |
STRING |STRING <max len> | <user defined >
<user defined>: =user defined by TYPE statement

DIM declares variables, arrays, and complex data structures.

DIM may have one or several arguments. Several data types
may be declared with this statement. DIM reserves memory space
for variables, arrays and complex data types.

EXAMPLE:

PROCEDURE dimdim

DIM number:BYTE

DIM numbertwo:INTEGER
DIM numberthree:REAL
DIM judgement:BOCIEAN
DIM word:STRING[4]

PRINT
number: =255 N\ PRINT number
number: =256 \ PRINT number
number: =257 ~ PRINT number
PRINT

numbertwo: =65535. \ PRINT numbertwo
numbertwo: =45.78 ~ PRINT numbertwo

PRINT

numberthree: =45.78 \ PRINT numberthree
numberthree: =45.78**8 \ PRINT numberthree
PRINT

judgement: = numberthree > numbertwo
PRINT judgement

PRINT

word: = “'Sometimes”’
PRINT word

PRINT

See also: PARAM, TYPE, BOOLEAN, BYTE, INTEGER, REAL,
STRING

208

DIR

SYSTEM MODE COMMAND
SYNTAX DIR [< pathlist>]
DIR displays the name, size, variable storage requirement, and
type of each procedure present in BASIC09's workspace. It also
returns the amount of free memory.

DIR accepts an optional argument — a pathlist to a file where
you would like to store the listing.

See also: CHD, KILL, LOAD, MEM
END

CONTROL STATEMENT
SYNTAX: END [<output list>]

END stops your procedure and returns to the calling procedure
or to the BASIC09 Command Mode.

END may have an optional argument — an output list that you
would like PRINTed on the standard output device.

END may be used more than once in a procedure. It does not
have to be located at the bottom of a procedure.

EXAMPLE:

PROCEDURE endem

(* Show use of END statement *)

(* It marks the end of a procedure *)

(* and telis BASICO09 to return. *)

(* Notice that it also lets you print *)

(* a message when you exit the procedure *)

DIM loopnumber:INTEGER
loopnumber: =0

WHILE loopnumber<5 DO
loopnumber: = loopnumber + 1
PRINT “"Loop # ’’; loopnumber

IF loopnumber =3 THEN

PRINT

END “Done after three loops!’’
ENDIF

ENDWHILE
END

See also: BYE, ERROR, PAUSE, STOP

209

EOF

BOOLEAN FUNCTION
SYNTAX: EOF (<NUM>)
EOF returns a TRUE or FALSE value.
EOF needs one parameter — a path number.

EOF is used to test for an end of file condition which means that
all the data on the file has been read. It should be used AFTER a
READ or GET statement. A TRUE value is returned as long as data
is available from the path named.

EXAMPLE:

PROCEDURE eofdem

(* Show use of EOF test *)

(* Create a file, read it a character *)

(* at a time — until you reach the end of file *)

DIM char:STRING[1]
DIM file:INTEGER

CREATE #file, "demofile :UPDATE
PRINT #file, 'This is a short file.”’
CLOSE #file

PRINT

PRINT '"We have created a short file. "’

PRINT "Now, we’ll read from it a character at a time ’
PRINT '"— until we run out of characters.”’

PRINT

OPEN #file, "demofile ":READ

WHILE NOT(EOF(#file)) DO

GET #file,char

PUT #1,char

ENDWHILE

CLOSE #file

PRINT \ PRINT

PRINT "You have reached the end of the file, ‘demofile’.”’
PRINT

SHELL ““del demofile’’

See also: READ, GET, TRUE, FALSE

210

CONTROL STATEMENT
SYNTAX: ERROR (<INT EXPR>)

ERROR is used to intentionally cause the computer to process
an error with the error code set equal to the number in the integer
expression.

ERROR needs one argument — an integer expression to be used
as the desired error code.

This statement is used to test error handling routines or to
terminate programs that need to return error status to a calling
program.

EXAMPLE:

PROCEDURE errordem
(* Show use of ERROR statement *)
(* to generate an error code for testing *)

DIM errornumber:INTEGER
ON ERROR GOTO 10

PRINT

PRINT "“Now is the time for all good men ..."
ERROR 211

PRINT “to come to the aid of their country.”

10 errornumber: = ERR

PRINT

PRINT "“You have encountered Error Number ’‘; errornumber;
PRINT ".”

PRINT ’‘This error condition was caused by the ERROR statement
PRINT “in the program.”’

PRINT

1

See also: ON ERROR GOTO, ERR

21

ERROR

FUNCTION
SYNTAX: ERR

ERR returns the INTEGER value of the most recent error’s error
code.

ERR needs no parameters.

ERR is used to determine or display the most recent error. ERR
returns the type of error by error code number and automatically resets
to zero after execution.

EXAMPLE:

PROCEDURE errdem

(* Show use of ERR numbers *)

(* Create a file, read it a character *)

(* at a time — until you reach the end of file *)

DIM char:STRING[1]
DIM count,file,errornumber:INTEGER

CREATE #file, "demofile ":UPDATE
PRINT #file, 'This is a short file.”’
CLOSE #file

ON ERROR GOTO 10

PRINT
PRINT “We have created a short file.
PRINT “"Now, we’ll read from it a character at a time ”’

PRINT “"— until we run out of characters.”’
PRINT

OPEN #file, "demofile ":READ

FOR count:=1 TO 100
GET #file,char

PUT #1,char

NEXT count

10 errornumber: = ERR

PRINT . PRINT
PRINT ""You have encountered ERROR Number ’’; errornumber

CLOSE #file

PRINT
PRINT "This means you have reached the end of the file.”
PRINT

SHELL ‘‘del demofile’’
See also: ERR

212

EXITIF ... ENDEXIT

CONTROL STATEMENT

SYNTAX: EXITIF <BOOLEAN EXPR> THEN < statements >
< statements >
ENDEXIT

EXITIF provides an exit test at any place within any kind of
Basic09 loop or control structure. It also provides for a sequence of
statements to be executed if the exit is taken.

If the BOOLEAN value of the expression following EXITIF is
TRUE, the statements up to the ENDEXIT are executed, then the
current loop is exited.

If the expression is FALSE, the statement following the ENDEXIT
is executed next, and the current loop level is maintained.

EXAMPLE:

PROCEDURE exitifdem
(* Show use of the EXITIF ... THEN ... ENDEXIT clause *)

DIM escapeloopnumber,loopcount:INTEGER

loopcount: =0
escapeloopnumber: =185

LOOP

loopcount: =loopcount + 1

EXITIF escapeloopnumber =loopcount THEN

PRINT

PRINT "“The counters are equal — It’s time to stop!”’
ENDEXIT

PRINT "."";
ENDLOOP

See also: FOR..NEXT, REPEAT..UNTIL, LOOP..ENDLOOP,
WHILE..DO

213

EXP

FALSE

MATH FUNCTION

SYNTAX: EXP(<NUM>)

EXP returns the base value of the natural logarithm e
(2.71828183) raised to the power <NUM>.

EXP needs one parameter — any expression that gives a numeric
result.

EXP is the opposite of the math function LOG.

EXAMPLE:

PROCEDURE expdem
(* Show the use of the EXP function *)

DIM number,exponent:REAL

number: =4.6051705
exponent: = EXP(number)

PRINT “The natural exponential of '’; number;
PRINT " is "’; exponent

See also: LOG, LOG10

BOOLEAN FUNCTION

SYNTAX: FALSE

FALSE returns the BOOLEAN value FALSE. It is usually used
to assign a value to a BOOLEAN variable.

FALSE has no arguments.
EXAMPLE:

PROCEDURE falsedem
(* Show use of FALSE function *)

214

DIM status:BOOLEAN
status: = FALSE

IF status THEN

PRINT "It must be true!”’
ELSE

PRINT It sure is false.!"”’
ENDIF

See also: BOOLEAN, TRUE

FIX

MATH FUNCTION
SYNTAX: FIX(<NUM>)

FIX returns the value of <NUM > as an INTEGER. It removes
all numbers to the right of the decimal point by truncating.

FIX needs one parameter — a numeric expression.

FIX is used to convert real numbers or convert values for use
in other logical or math functions where an INTEGER is required.
FiIX is the opposite of the math function FLOAT. Don’t confuse FIX

with INT. INT rounds real numbers; FIX converts REAL type numbers
to INTEGER type numbers.

EXAMPLE:

PROCEDURE fixdem
(* Show FIX function in action *)

DIM number,numbertwo:REAL

number: = 123.4567
numbertwo: = FIX(number)

PRINT “If you print ’; number;
PRINT *’ after FIXing it, you will see ‘’; numbertwo

See also: FLTAT

215

FLOAT

MATH FUNCTION
SYNTAX: FLOAT(<NUM>)
FLOAT returns the value of <NUM> as a REAL number.
FLOAT needs one parameter — a numeric expression.

FLOAT is used to convert a BYTE or INTEGER type value to
type REAL. This is used to increase the accuracy of the result of a
numeric expression or to make a REAL value where a REAL is
required. It is the opposite of the math function FIX.

EXAMPLE:

PROCEDURE floatdem
(* Demonstrate use of FLOAT function *)

DIM number:INTEGER
DIM result:REAL

number: =258
result: = FLOAT(number)

PRINT

PRINT “If you print ‘’; number;

PRINT "’ after using it in the FLOAT function,’’

PRINT "“you will see a REAL number: "’; result

PRINT _

PRINT ""Notice that BASIC09 always prints REAL numbers”’
PRINT "with a decimal point.”’

PRINT

See also: FIX

216

CONTROL STATEMENT

SYNTAX: FOR <VAR> = <EXPR> TO <EXPR> [STEP
<EXPR>]

< statements >

NEXT

FOR is the first part of the FOR ... TO ... NEXT statement and
is used to assign numbers to numeric variables within the range
specified by FOR and TO.

TO tells BASIC09 how many times to execute a loop. The ex-
pression on either side of TO may have an INTEGER or a REAL value.
However, a FOR ... TO ... NEXT loop that uses INTEGER counters
is much faster.

NEXT causes the counter variable to be automatically increased
or decreased. It tells BASICO09 to return and execute the statement
following the FOR part of the statement.

STEP determines the size of the increase or decrease. If no

STEP is indicated in the statement, BASIC09 automatically uses a
STEP of one.

EXAMPLE:

PROCEDURE fordem
(* Show FOR ... NEXT construct at work *)

DIM count:INTEGER

FOR count: =1 TO 5
PRINT count;

PRINT " "
NEXT count
PRINT

FOR count: =5 TO 100 STEP 5
PRINT count;

PRINT " '’

NEXT count

PRINT

See also: none

217

FOR .. TO [STEP]
NEXT

GET

INPUT/OUTPUT STATEMENT
SYNTAX: GET <EXPR>, <struct name >
GET is used to read binary data records from a file or device.

GET needs two arguments. The first is an expression that
evaluates to the number of the input/output path. The second is the
name of a variable, array or complex data structure.

GET is commonly used to read elements of a random access
file. It is also used to read single, raw characters from a terminal.

EXAMPLE:

PROCEDURE getdem

(* Show use of GET statement *)

(* Create a file, read in a character *)

(* at a time — until you reach the end of file *)

DIM char:STRING[1]
DIM file:INTEGER

CREATE #file, "demofile :UPDATE
PRINT #ffile, 'This is another test file.”’
CLOSE #file

PRINT
PRINT ""We have created a short file. "’
PRINT ""Now, we’ll read from it a character at a time "’

PRINT “"using the GET statement to fetch a string with one character.”
PRINT

OPEN #file, 'demofile’:READ
WHILE NOT(EOF(file)) DO
GET #file,char

PUT #1,char

ENDWHILE

PRINT \ PRINT
CLOSE #file

SHELL "'del demofile”’

See also;: CREATE, PUT

218

CONTROL STATEMENT

SYNTAX: GOSUB <line >

GOSUB is the first part of the GOSUB ... RETURN control
construct. GOSUB transfers control of program flow to a subroutine.

GOSUB needs one argument — a line number. When BASIC09
finds a RETURN in the subroutine, it returns and executes the
statement following GOSUB.

GOSUB is used to branch out of a procedure’s main flow to a

subroutine. It may be used to link several separate subroutines into
a main procedure.

EXAMPLE:

PROCEDURE gosubdem
(* Show a subroutine in use *)
DIM count:INTEGER
PRINT

FOR count: =1 TO 9
GOSUB 10

NEXT count

STOP

10 PRINT count;

PRINT " *;

PRINT “Hello Again.”’
RETURN

See also: ON, GOTO

219

GOSUB ... RETURN

GOTO

CONTROL STATEMENT
SYNTAX: GOTO <line >

GOTO does not return a value. It causes a jump to the line
number you specify.

GOTO needs one argument — a line number or a variable that
represents a line number.

GOTO is used to force your procedure to branch to a new line
instead of executing the next line in sequence.

EXAMPLE:

PROCEDURE gotodem
10 REM Show use of GOTO statement
20 PRINT . ""The GOTO statement ’;

30 GOTO 60
40 PRINT ““doesn’t work."’
50 STOP

60 PRINT “‘works well but is a dangerous”’
70 PRINT "'‘programming practice.”’
80 END

See also: GOSUB, ON

220

IF ... THEN ... ELSE ... ENDIF
CONTROL STATEMENT

SYNTAX: IF <BOOLEAN expression> THEN <line #>

OR: IF <BOOLEAN expression> THEN <statements >
[ELSE < statements>]
ENDIF

IF is the first part of the IF ... THEN ... ELSE control construct.
It does not return a value. Itindicates a variable is to be tested using
a BOOLEAN expression such as one of BASIC09’s relational
operators. If the condition tested is TRUE, control is transferred to
the line number following THEN.

If no line number is used, you must use the second form of the
statement. Then, if the condition tested is TRUE, the statements
between the THEN and the ENDIF are executed.

ELSE causes BASICO09 to skip all statements between ELSE and
ENDIF when the BOOLEAN expression following the IF statement
is TRUE.

ELSE diverts the flow of a procedure to the ailternate statements
between ELSE and ENDIF when the expression following the IF
statement is FALSE.

EXAMPLE:

PROCEDURE ifdem
(* Demonstrate use of the IF ... THEN ... ELSE ... ENDIF *)

DIM numbone,numbtwo:INTEGER

numbone: =333
numbtwo: =222

PRINT

PRINT ""The first number is: '’; numbone
PRINT "The second number is: ’; numbtwo
PRINT

IF numbone < numbtwo THEN
PRINT ""The first number is smaller! ”’
ELSE

PRINT '"The second number is smaller.”’
ENDIF
END

See also: none

221

INPUT

INPUT/OUTPUT STATEMENT
SYNTAX: INPUT [<INT EXPR>,]['' <prompt>",] <input list>

INPUT reads values from a terminal and assigns them to
variable(s). However, it returns an error message if you enter the
wrong TYPE of data. It causes the computer to print a question mark
when it is waiting for you to INPUT data.

INPUT needs a variable name or a list of variable names that
tell BASIC09 where to store data being INPUT. It also accepts two
optional arguments; a path number in the form of an INTEGER
expression and a prompt for display on your terminal.

INPUT is used to assign values to variables during program
execution. The values normally come from your terminal, but will be
fetched from an external storage device if a path number is specified.

EXAMPLE:

PROCEDURE inputdem

(* Show INPUT statement in action *)
DIM age,path:INTEGER

DIM name:STRING[18]

DIM sentence:STRING[80]

(* First from the keyboard *)

INPUT "“What is your name? ’‘;name
PRINT “What is your age '’; name;
INPUT age

PRINT

PRINT "“Nice to meet you ’’; name;
PRINT "“. I'm glad you are ’’; age; ".”
PRINT

PRINT “Excuse me for a minute while | create a file
PRINT ""and read a sentence from it."”
PRINT

(* Then from a file *)

(* First we must create a file to read *)
CREATE #path, "demofile :WRITE
PRINT #path,’’l was read from a file named ‘demofile’.”’
CLOSE #path

(* Now, we’ll open it for read *)

(* and print the data *)

OPEN #path, "demofile :READ

INPUT #path,sentence

CLOSE #path

SHELL “del demofile’’

PRINT sentence

PRINT

See also: GET, READ

17

222

INT

MATH FUNCTION
SYNTAX: INT<num>

INT rounds a value to the nearest whole number. It returns a
REAL value.

INT needs one parameter, a REAL number. The number may
be negative or positive.

Don’t confuse INT with FIX. INT rounds real numbers; FIX
converts REAL type numbers to INTEGER type numbers.

EXAMPLE:

PROCEDURE intdem

(* Show INT function *)

DIM number,roundednumber:REAL
DIM count,integernumber:INTEGER

DATA 3.336,5.761,101.888

PRINT
PRINT “First we’ll print a number and its INTeger value."”’
PRINT

FOR count:=1TO 3

READ number

integernumber: = INT(number)
PRINT number,integernumber
NEXT count

PRINT

PRINT "“Then, we’ll print the same numbers as if they were”’
PRINT “money rounded off to the nearest whole penny.’’
PRINT

(* Now let’s use INT to round off the same numbers *)

FOR count:=1TO 3

READ number

number: = number*100 + .5
roundednumber: = INT(number)
roundednumber: =roundednumber/100
PRINT roundednumber

NEXT count

PRINT

223

INTEGER

KILL

TYPE SPECIFICATION
SYNTAX: DIM <VARIABLE >: INTEGER
INTEGER TYPEs a variable.

INTEGER needs one argument; a single variable or list of
variables.

INTEGER is used with the DIM or PARAM statement to TYPE
variables and reserve memory for them. INTEGER variables may
never store a value less than -32768 or greater than 32767. Arithmetic
with INTEGER variables is much faster than arithmetic with REAL
variables.

See also: BYTE, REAL, STRING, BOOLEAN

CONTROL STATEMENT
SYNTAX: KILL <STR EXPR>
KILL deletes external procedures from BASIC09’s directory.

KILL needs one argument; a string expression that names an
external procedure.

KILL is used to free up system memory. It will not delete a
procedure located in BASIC09’s workspace.

EXAMPLE:

PROCEDURE killdem

(* Show how you can remove a packed procedure *)

(* with BASIC09’s KILL statement *)

DIM favoriteprocedure:STRING[31]

PRINT

PRINT "WARNING: You must ask for a packed BASIC09 procedure’’
PRINT ““that you have already loaded into memory or one that”’
PRINT “is stored in your current execution directory.”

PRINT "“Otherwise you will cause an ‘unknown procedure’ error.”’
PRINT

INPUT ""Which procedure would you like to run? " favoriteprocedure
RUN favoriteprocedure

KILL favoriteprocedure

SHELL ""mdir”’

224

PRINT 'Notice that the KILL statement has removed your”’
PRINT “procedure from memory."””
PRINT

See also: none

KILL

SYSTEM MODE COMMAND

SYNTAX KILL <PROCEDURE NAME >
KiLL*

KILL erases a procedure (KILL*, all procedures) from the
BASIC09 workspace.

KILL needs one argument, the name(s) of the procedures to be
erased.

KILL removes procedures no longer wanted. You must SAVE
the procedure before KILLing or it will be permanently erased.

LAND

LOGICAL FUNCTION
SYNTAX: LAND(<num>,<num>)
LAND returns an INTEGER result.
LAND needs two parameters of type INTEGER or BYTE.

LAND performs logical operations bit by bit. It returns an
INTEGER result. LAND stands for Logical AND. It is not a
BOOLEAN operator.

EXAMPLE:

PROCEDURE landdem

(* Show Logical AND function *)
DIM number,numbertwo:BYTE

PRINT "1 = 00000001"
PRINT “3 = 00000011 "
PRINT

PRINT ""The Logical AND should be ‘1’ or 00000001
PRINT “Let’s try it."”’

PRINT

number: =1

numbertwo:=3

PRINT LAND(number,numbertwo)

PRINT

See also: LOR, LXOR, LNOT

225

LEFTS

STRING FUNCTION
SYNTAX: LEFT$(<string$>,<INT>)

LEFTS$ returns a specified number of characters from the left
end of a STRING variable.

LEFTS$ needs two parameters. The first must be a STRING
constant or the name of a STRING variable. The second must be
an INTEGER number with a value between zero and 255 decimal.

LEFTS is often used in PRINT statements. It may also be used
to assign a value to another STRING variable.

EXAMPLE:

PROCEDURE leftdem
(* Demonstrate LEFT$ Statement *)

DIM examplestring:STRING

examplestring: = "REMarkable!’’

PRINT “Who made that ‘‘; LEFT$(examplestring,6); "'?"’
END

See also: CHRS$, MID$, RIGHTS, TRIMS$, DATES

LEN

STRING FUNCTION
SYNTAX: LEN(<STRING>)
LEN returns an INTEGER or BYTE value.
LEN needs one parameter, a literal STRING or STRING variable.

LEN determines the length of a STRING variable by counting
the number of characters enclosed in quotes or assigned to a string
variable.

EXAMPLE:

PROCEDURE lendem
(* Show how to use the LEN function *)
DIM sentence:STRING[80]

PRINT

PRINT "“Type a few words. Take up to 80 characters, but don’t”’
PRINT “use any commas."”’

PRINT

226

INPUT "Your words: “',sentence

PRINT

PRINT ""You typed, ‘’’; sentence; " — '’;

PRINT "‘a total of ; LEN(sentence); '’ characters.”’
PRINT

See also: ASC, SUBSTR

ASSIGNMENT STATEMENT

SYNTAX: [LET] <var> := <EXPR>
[LET] <var> = <EXPR>
[LET] <struct> := <struct>
[LET] <struct> = <struct>

LET assigns values to variables. The LET keyword is optional,
an assignment by itself does the same thing.

LET needs two arguments. One must be a variable and the other
an expression. The second may also be the value of an array or data
structure that you want to copy into another complex structure.

LET evaluates an expression and stores the result in a variable.
It can also be used to copy complex data structures.

EXAMPLE:

PROCEDURE letdem
(* Show use of LET statement *)

DIM number:INTEGER

LET number: =45

PRINT

PRINT number

PRINT

PRINT "“The LET statement let you set the value of ‘number’”’

PRINT ““to 45 in the code above. But, it is an optional statement.”

PRINT
PRINT "“number : = 56’ — works just as well.”

number: =56
PRINT
PRINT number

PRINT \ PRINT ’'See!"”
PRINT

See also: none

227

LET

LIST

LNOT

SYSTEM COMMAND
SYNTAX: LIST
LIST displays a formatted listing of the current procedure.
LIST needs no arguments.
LIST may be used from both the system mode and the DEBUG
mode. If the optional asterisk is used, LIST* lists all procedures in

your workspace.

See also: BREAK, CONT, DIR, END, STATE

LOGICAL FUNCTION
SYNTAX: LNOT(<num>)
LNOT returns an INTEGER result.

LNOT needs one parameter, an INTEGER or BYTE
number.

LNOT performs logical operations bit by bit and returns INTEGER
results. LNOT stands for Logical NOT. IT is not a BOOLEAN
operator.

EXAMPLE:

PROCEDURE Inotdem
(* Show how Logical NOT statement is used *)

DIM number,numbernot:INTEGER

PRINT
INPUT “Type a number between -32768 and 32767: '“,number

numbernot: = LNOT(number)

PRINT “The binary compiement of '’; number; " is '’;
PRINT numbernot

PRINT

See also: LAND, LOR, LXOR

228

LOAD
SYSTEM COMMAND
SYNTAX: LOAD < pathlist>
LOAD loads procedures into the computer from a disk or tape file.
LOAD needs one argument. It may be the name of a file in the
current data directory, a complete OS-9 pathlist or the name of a

device.

LOAD is used to load procedures into BASIC09’s workspace.
It is entered from the System Mode.

See also: CHD, EDIT, KILL, LIST, RUN, SAVE

LOG

MATH FUNCTION
SYNTAX: LOG(<num>)
LOG returns the natural logarithm of a number greater than zero.

LOG needs one parameter, a REAL or INTEGER number or a
variable of those TYPEs.

LOG finds the power a number must be raised to in order to get
a known result.

EXAMPLE:

PROCEDURE logdem
(* Show LOG function in use *)

DIM number:REAL

PRINT

INPUT ""Type a positive number: ",number
PRINT

PRINT ""The natural log of ‘‘; number;
PRINT " is "'; LOG(number)

PRINT

See also: EXP, LOG10

229

LOG10

LOOP ... ENDLOOP

MATH FUNCTION

SYNTAX: LOG10(<num>)
LOG10 returns a REAL number. It is the opposite of LOG.

LOG10 needs one parameter, a REAL or INTEGER number or
variable.

LOG10 finds the value of the “‘common’’ or base 10 logarithm
of any number whose value is greater than zero.

EXAMPLE:

PROCEDURE log10dem

(* Demonstrate use of LOG10 function *)
DIM number:REAL

PRINT

INPUT "Type a positive number: "“,number
PRINT

PRINT "The common log of '‘; number;
PRINT " is ’; LOG10(number)

PRINT

See also: EXP, LOG

CONTROL STATEMENT

SYNTAX: LOOP
ENDLOOP

LOOP is part of the LOOP ... ENDLOOP construct.

LOOP defines the start of a loop. Statements between LOOP
and ENDLOOP are executed over and over again. They will RUN
forever uniess an EXITIF statement is used to create an exit condition..

ENDLOOP defines the end of a loop. When BASICO09 sees this
word it returns to the statement following the word LOOP and starts

over.

EXAMPLE:
PROCEDURE loopdem

(* Show the LOOP ... ENDLOOP Construct *)
(* Dangerous: It will loop forever without EXITIF clause *)

DIM countlessloops:INTEGER

230

countlessloops: =0

LOOP

countlessioops: = countlessloops + 1
PRINT "*";

EXITIF countlessloops >150 THEN
PRINT

PRINT "That’s 150 stars!’’
ENDEXIT

ENDLOOP
See also: ENDLOOP, EXITIF

LOGICAL FUNCTION
SYNTAX: LOR(<num>,<num>)
LOR returns an INTEGER result.
LOR needs two parameters, of type INTEGER or BYTE.

LOR stands for Logical OR. It performs bit by bit logical opera-
tions. LOR is not a BOOLEAN operator.

EXAMPLE:

PROCEDURE lordem
(* Show Logical OR — LOR *)

DIM number,numbertwo:INTEGER

PRINT
PRINT “3 = 00000011 "
PRINT “8 = 00001000"
PRINT

PRINT ""The Logical OR of ‘3’ and ‘8’ should be ‘11’."”’
PRINT ‘‘Let’s try it.”

number:=3
numbertwo: =8

PRINT

PRINT LOR(number,numbertwo)
PRINT

PRINT "How about that!"”’
PRINT

See also: LAND, LNOT, LXOR

231

LOR

LXOR

LOGICAL FUNCTION
SYNTAX: LXOR(<num>,<num>)
LXOR returns an INTEGER result.
LXOR needs two parameters, of type INTEGER or BYTE.

LXOR is used to perform a bit by bit Exclusive OR operation on
BYTE or INTEGER data. It stands for Logical eXclusive OR.

EXAMPLE:

PROCEDURE Ixordem
(* Show Logical eXclusive OR *)

DIM number,numbertwo:INTEGER

PRINT
PRINT '3 = 00000011"
PRINT “9 = 00001001 "
PRINT

PRINT ""The Logical eXclusive OR of ‘3’ and ‘9’ shouid be ‘10°."
PRINT “‘Let’s try it.”

number:=3
numbertwo:=9

PRINT

PRINT LXOR(number,numbertwo)
PRINT

PRINT ""Just like magic!”’

PRINT

See also: LAND, LOR, LNOT

SYSTEM MODE COMMAND

SYNTAX: MEM
MEM <number>

MEM returns a decimal number which is the amount of available
memory in the BASIC09 workspace.

232

MEM accepts an optional argument which may be a hexadecimal
number or a decimal number.

MEM is used to find out how much room is left in the workspace.
However, it may also be used to expand the workspace. In this case
the number of bytes of memory needed is typed following MEM.

See also: DIR, KILL, LOAD,

MID$

STRING FUNCTION
SYNTAX: MIDS$(<string$>,<int1>,<int2>)

MIDS$ returns the requested number of characters from the
middle of a STRING variable.

MID$ needs three parameters. The first is the name of the
STRING (or a STRING expression) the characters are to be taken
from. The second is an INTEGER value that marks the location of
the first character to be removed. The third is an INTEGER value
that tells BASIC09 how many characters to take.

MIDS is used to isolate a specified number of characters from
the middle of a STRING. It may also be used to assign a value to
another STRING variable.

EXAMPLE:

PROCEDURE middem
(* Demonstrate the use of MID$ Statement *)

DIM examplestring:STRING
examplestring: = "REMarkable!"”’

PRINT ““That is the ’; MID$(examplestring,3,4);
PRINT " of an "’; MID$(examplestring,7,4); *’* man."’

END

See also: CHRS$, LEFTS$, RIGHTS, TRIMS$, DATES

233

MOD

MATH FUNCTION
SYNTAX: MOD(<num1>,<num2>)
MOD returns a number of type INTEGER or BYTE.
MOD needs two parameters of type INTEGER or BYTE.

MOD computes the arithmetic remainder after a division (the
modulus function).

EXAMPLE:

PROCEDURE moddem
(* Show MOD function *)

DIM dividend,divisor,quotient:REAL
DIM integerresult,resultofmod:INTEGER

PRINT

PRINT “Let’s divide one number by another."”’

PRINT

INPUT “First, give me a number to be divided: "',dividend

INPUT “Now, give me the number you wish to divide it by: "’,divisor

quotient: = dividend/divisor
integerresult: = INT(quotient)
resultofmod: = MOD(dividend,divisor)

PRINT

PRINT dividend; "' divided by ’‘; divisor; "' is '’; quotient
PRINT

PRINT "“Or, it is "’; integerresult; '’ with a remainder”’
PRINT “— or MODulo — of '’; resultofmod

PRINT

See also: ABS, FIX

234

NOT

BOOLEAN FUNCTION
SYNTAX: NOT <expression>

NOT returns a TRUE or FALSE value. It is most often used in
the IF ... THEN conditional statement.

NOT needs one parameter, an expression that evaluates to TRUE
or FALSE.

NOT is used as a logical operator to reverse a normal result.

For example: If “ALPHA > BETA" is TRUE, "NOT(ALPHA
> BETA)" would be FALSE.

EXAMPLE:

PROCEDURE notdem

(* Show Boolean NOT operator *)
DIM status:BOOLEAN

DIM firstscore,secondscore:INTEGER

PRINT

INPUT “"What was your score in the first game? ", firstscore
INPUT “What was your score in the second game? '‘,secondscore
PRINT

status: = firstscore >secondscore

IF NOT(status) THEN

PRINT "It looks like the first game was a warm-up.”’

ELSE

PRINT “It looks like you should have quit while you were ahead.”
ENDIF

PRINT

See also: AND, OR, XOR

235

ON ERROR GOTO

CONTROL STATEMENT
SYNTAX: ON ERROR [GOTO <line > }

ON ERROR GOTO transfers control to the specified line when
an error occurs.

ON ERROR GOTO needs one argument — a line number that
tells your program where to GO when an error occurs. You may use
ON ERROR without the line number to force your procedure to enter
the DEBUG mode when an error occurs.

ON ERROR GOTO may be used to “trap’’ program errors and
report them. This does not happen until after the ON ERROR GOTO
is executed. Another ON ERROR GOTO can be used later to change
the error routine.

EXAMPLE:

PROCEDURE onerrordem
(* Show ON ERROR GOTO in use *)
DIM number,result:REAL

ON ERROR GOTO 10

PRINT “Type a number and we’ll print its inverse.

PRINT "“After you have tried a few numbers try a value of zero.”’
PRINT

INPUT "Your number: “,number

result: = 1/number

PRINT

PRINT ""The inverse of '’; number; "’ is '’; result
PRINT

STOP

10 PRINT

PRINT ""You cannot divide by zero. Sorry we can’t help you."”
PRINT “Goodbye!"’

PRINT

See also: ERR, ERROR

236

CONTROL STATEMENT
SYNTAX: ON <int expr> GOSUB <line > {, <line >}

ON GOSUB is a multiple subroutine branching scheme that
accomplishes a number of IF ... GOSUB tests in one statement.

ON GOSUB needs two arguments. The first, a positive INTEGER
or the positive INTEGER result of an expression. The second, a line
number from a list following the verb GOSUB.

ON GOSUB may be used with the INPUT statement to write
menu-driven programs.

EXAMPLE:

PROCEDURE ongosubdem
(* Show ON ... GOSUB statement in action *)

DIM card:INTEGER

REPEAT

card: =INT(13*RND(0)) + 1
card: =card-10

UNTIL card >0 AND card<4
ON card GOSUB 100,110,120
STOP

100 PRINT “You drew a JACK"’
RETURN

110 PRINT "“You drew a QUEEN"
RETURN

120 PRINT “You drew a KING"
RETURN

See also: ON GOTO

237

ON GOSUB

ON GOTO

CONTROL STATEMENT
SYNTAX: ON <int expr> GOTO <line > {,<line >}

ON GOTO is a multiple branching scheme similar to ON ...
GOSUB.

ON GOTO needs two arguments. The first, a positive INTEGER
or the INTEGER result of an expression. The second, a line number
from a list following the verb GOTO.

ON GOTO may also be used with the INPUT statement to write
menu-driven programs.

EXAMPLE:

PROCEDURE ongotodem
(* Show ON ... GOTO statement in action *)

DIM card:INTEGER

REPEAT

card: =INT(13*RND(0)) + 1
card: =card-10

UNTIL card>0 AND card<4

ON card GOTO 100,110,120

100 PRINT "“You drew a JACK"

STOP

110 PRINT ""You drew a QUEEN "’

STOP

120 PRINT ""You drew a KING"”’

STOP
See also: INPUT, ON GOSUB

238

OPEN

INPUT/OUTPUT STATEMENT

SYNTAX: OPEN <intvar>,<stringexp> [: <access mode >]
<access mode> := <mode>! <mode> + <access mode>
<mode > :=READ ! WRITE ! UPDATE !
EXEC! DIR

OPEN opens an input or output path to a file or device.

OPEN needs several arguments. The first, an INTEGER number
— or an expression or variable that evaluates as an INTEGER. This
number becomes the input/output path number. A STRING
expression gives the file name or complete pathlist. You may also
specify the access mode — READ, WRITE or UPDATE.

OPEN may be used to access files or devices — even the
Execution and Data Directories. See your OS-9 User’s Guide for
details about file structure.

EXAMPLE:

PROCEDURE opendem
(* Show how to use OPEN statement *)

DIM printer:INTEGER
DIM device__name:STRING[2]

device_name:= "Ip”’

OPEN #printer,device__name:WRITE

PRINT #printer

PRINT #printer,”’"We have opened an output path to the system printer."”’
PRINT #printer,”"We must remember to CLOSE it when we are through”
PRINT #printer,’’so that other users on the system can use it."”

PRINT #printer

CLOSE #printer

PRINT “We have sent data to the printer. But, we could’’
PRINT “’just as easily have sent it to a file on one of”’
PRINT “‘your floppy disks."’

PRINT

See also: CLOSE, PRINT, WRITE

239

OR

BOOLEAN FUNCTION
SYNTAX: IF <expression> OR <expression> THEN <line >
OR returns a BOOLEAN resutt.

OR needs two parameters. Both expressions must evaluate to
a BOOLEAN result.

OR is used in an IF/ITHEN statement to test for multiple
conditions. If either of the expressions in an OR statement evaluates
as TRUE, control is transferred to the line number or statement
following THEN.

EXAMPLE:

PROCEDURE ordem
(* Demonstrate use of Boolean OR *)

DIM status:BOOLEAN
DIM number:INTEGER

PRINT
INPUT “Type a number between one and 10: “’,number

(* status becomes true if you don’t follow directons *)
status: = number<1 OR number> 10

IF status THEN

PRINT

PRINT ""Better follow directons!”’

PRINT "Next time type a number between one and 10.”
ELSE

PRINT

PRINT “Your number was ’’; number

PRINT "“"Thanks!’’

ENDIF

PRINT

See also: XOR, AND, NOT

240

SYSTEM COMMAND

SYNTAX: PACK[<proc name> {,<proc name > }]
[> < pathlist>]
PACK*[< pathlist >]

PACK does not return a value. PACK causes an extra compiler
pass that makes your procedure smaller and faster.

PACK needs several arguments; the name of the procedures
you want to PACK and a pathlist which names the file where they
are to be stored.

PACK produces compact procedures that load and run in
memory outside BASIC09’s workspace. PACKed procedures cannot
be edited or debugged. You must always SAVE your procedures in
source form before performing a PACK.

See also: SAVE

DECLARATIVE STATEMENT

SYNTAX: <decl seq> {; <decl seq> }

< decl seq> = <decl> {, <decl> } [: <type>]
<decl> : <name> =[<subscript>]
<subscript>:= (<const> [,<const> [,<const>]])

< type > := BYTE | INTEGER | REAL | BOOLEAN|

STRING | STRING <max len> |
<user defined type >
<user def> : = user defined by TYPE statement

PARAM needs two arguments — a list of variables, arrays or
user defined data types being DIMensioned and the data TYPE.

PARAM is similar to the DIM statement execpt that it is used
to describe the parameters a called procedure should expect to receive
from another procedure via a RUN statement.

See also: DIM

241

PACK

PARAM

PAUSE

CONTROL STATEMENT
SYNTAX: PAUSE [<output list>]
PAUSE does not return a value.

PAUSE may use an optional argument — a message that is listed
on your terminal after the PAUSE.

PAUSE is used to insert “‘breakpoints’ in your programs. Execu-
tion stops when a procedure that contains a PAUSE statement is
entered and BASICO09 enters its DEBUG mode. You may continue
program execution by typing CONT.

EXAMPLE:

PROCEDURE pausedem
(* demostrate PAUSE statement *)

PRINT A PAUSE statement causes BASIC09 to enter its Debug Mode.”
PRINT "You must type ‘cont’ to continue.”’

PRINT

PRINT "You can also let the PAUSE statement print a message to"’
PRINT “remind you why the program stopped. Like this.”’

PRINT

PAUSE "'l quit. You must type ‘cont’ to continue.”’
PRINT

PRINT ""Thanks!"’

PRINT

See also: CONT

PEEK

MISCELLANEOUS FUNCTION
SYNTAX: PEEK (<int>)

PEEK returns the BYTE value stored at the specified memory
address.

PEEK needs one parameter; an INTEGER memory address.
PEEK is used to examine memory locations.
EXAMPLE:

PROCEDURE peekdem
(* Demonstrate use of PEEK *)

242

DIM address,count:INTEGER
DIM sampler:STRING[36]
DIM characterholder:BYTE

(* Assign value to string *)

sampler: = “"The PEEK function should be X-rated!"’
(* Now point directly to STRING in memory *)
address: = ADDR(sampler)

(* Get each character from memory and PRINT it *)

FOR count: =0 TO LEN(sampler)-1
characterholder: = PEEK(address + count)
PRINT CHR$(characterholder);

NEXT count

PRINT
END
See also: POKE

MATH FUNCTION
SYNTAX: PI
Pl returns a REAL constant (3.14159265).

Pl doesn’t need any parameters.

Pl is used in expressions that require this constant for calculation.

EXAMPLE:

PROCEDURE pidem
(* Show use of Pl function *)
DIM circumference,radius:REAL

INPUT "What is the radius of your circle? “,radius
circumference: = 2*Pl*radius

PRINT

PRINT "“Thank you. The circumference of a circle with a”’
PRINT ‘‘radius of ‘’; radius; “feet is '’; circumference;
PRINT " feet.”

PRINT

See also: none

243

Pl

POKE

ASSIGNMENT STATEMENT
SYNTAX: POKE <int expr>, <byte expr>

POKE needs two arguments; an INTEGER expression followed
by a BYTE expression.

POKE stores data of type BYTE at a specified address.

EXAMPLE:

PROCEDURE pokedem

(* Demonstrate use of POKE *)
DIM address,count:INTEGER
DIM sampler:STRING[10]

DIM characterholder:BYTE

(* Assign value to string *)
sampler: = “"XXXXXXXXXX "’
PRINT

PRINT “Let’s print the STRING sampler.”
PRINT

PRINT sampler
PRINT

(* Now point directly to ‘sampler’ in memory *)
address: = ADDR(sampler)

(* And POKE some new characters into the string *)
FOR count: =0 TO LEN(sampler)-1

characterholder: = count + $30

POKE address + count,characterholder

NEXT count

(* Now we’ll print the new string *)

PRINT "After the POKE operations, sampler contains: '’; sampler
PRINT

END

See also: PEEK

244

FUNCTION
SYNTAX: POS

POS returns the position of the cursor or print position in the cur-
rent PRINT line.

POS doesn’t need any parameters.

POS is used to find out where the next character will be printed.

EXAMPLE:

PROCEDURE posdem

(* Demonstrate a use of the POS function *)
DIM length:INTEGER

DIM exampie:STRING[80]

PRINT

PRINT “’First, we’ll print a line of a specified length. "’

INPUT "How many stars would you like in your line? ",length
PRINT

REPEAT

PRINT “"*°;

UNTIL POS > length
PRINT

(* Then we’ll use it to count characters *)

PRINT

PRINT "Now, type a line of text — any length. "’
PRINT

INPUT ’'Start here: ",example

PRINT

PRINT example;

length: = POS-1

PRINT

PRINT ""You typed “; length; "’ characters."”’
PRINT

See also: none

245

POS

PRINT

INPUT/OUTPUT STATEMENT
SYNTAX: PRINT [<int expr>,] <output list>

PRINT sends data to the standard output device — usually your
terminal.

PRINT needs an output list containing the data to be printed.
It also accepts an INTEGER expression that defines the path where
the data should be sent.

PRINT is used to output data. It is also often used to display
the value of a variable.

See also: OPEN, CREATE, POS, TAB, USING

EXAMPLE:

PROCEDURE printdem
(* Show use of PRINT statement *)

DIM words(4):STRING[18]
DIM count,numbers(4):INTEGER

DATA 111,112,112,114
DATA "This’’,”is"’,”’a”", "test.”’

FOR count:=1 TO 4
READ numbers(count)
NEXT count

FOR count: =1 TO 4

READ words(count)
NEXT count

246

PRINT
PRINT “First we’ll PRINT words and numbers without punctuation.’”
PRINT

FOR count:=1 TO 4
PRINT numbers(count)
NEXT count

PRINT

FOR count:=1TO 4
PRINT words(count)
NEXT count

PRINT
PRINT “Then we’ll print with semicolons.”
PRINT

FOR count:=1 TO 4
PRINT numbers(count);
NEXT count

PRINT

FOR count:=1 TO 4
PRINT words(count);
NEXT count

PRINT \ PRINT

PRINT “And finally, we’ll print with Commas. *
PRINT

FOR count: =1 TO 4
PRINT numbers(count),
NEXT count

PRINT

FOR count:=1 TO 4
PRINT words(count),
NEXT count

PRINT \ PRINT

See also: OPEN, CREATE, POS, TAB, USING

247

PUT

INPUT/OUTPUT STATEMENT
SYNTAX: PUT <expr>,<structure name >
PUT does not return a value.

PUT needs two arguments — an INTEGER expression naming
a path and a structure or variable name.

PUT writes fixed size binary data to random access files or
devices.

EXAMPLE:

PROCEDURE putdem
(* Show use of PUT statement *)
(* First, create a file *)

DIM example:STRING[22]
DIM examplefromdisk:STRING[22]
DIM file:INTEGER

example: = “This is a test string.”

CREATE #file,"demofile ":UPDATE
CLOSE #file

PRINT

PRINT “"We have created a short file. ’*

PRINT “"Now, we’ll PUT an entire STRING into it at one time."”’
PRINT

OPEN #file, "demofile ":WRITE
PUT #file,example
CLOSE #file

PRINT
PRINT ‘“’Let’s read our file back now.”’
PRINT

OPEN f#file, "demofile ":READ
GET #file,examplefromdisk
PRINT examplefromdisk
PRINT

CLOSE #file

SHELL ‘del demofile”’
See also: CREATE, GET

248

RAD

DIRECTIVE STATEMENT
SYNTAX: RAD
RAD doesn’t require any arguments.

RAD tells a procedure that all angles should be evaluated as
RADians instead of DEGrees. RAD is the opposite of DEG.

EXAMPLE:

PROCEDURE raddem
(* Demonstrate use of RAD statement *)

(* Use Radians *)
RAD
DIM nearside,hypotenuse,ratio:REAL

INPUT "The length of the side adjacent to the angle? '’,nearside
INPUT ""The length of the hypotenuse? ‘" ,hypotenuse

ratio: = nearside/hypotenuse
PRINT . PRINT “Your angle is '’;
PRINT ACS(ratio); " radians.”
PRINT

END
See aiso: DEG

249

READ

INPUT/OUTPUT STATEMENT
SYNTAX: READ <int expr>, <input list>
READ returns ASCII data from a file or device.
READ needs several arguments; an INTEGER expression
naming a path number and an input list that tells BASIC09 where to

store the data it READs.

READ is used to extract data from files.

EXAMPLE:

PROCEDURE readdem
(* Show use of READ statement *)

DIM words(3):STRING[10]
DIM count:INTEGER

DATA “1”,”Quit! "’
(* First read and print internal data *)
PRINT

FOR count:=1 TO 2
READ words(count)
PRINT words(count)
NEXT count

PRINT

(* Now READ from an external source, like the keyboard *)

PRINT ""Type three words. Follow each with a carriage return.”’
PRINT

FOR count:=1TO 3
READ #0,words(count)
NEXT count

PRINT

FOR count:=1TO 3
PRINT words(count)
NEXT count

PRINT

See aiso: CREATE, GET, OPEN, PRINT, WRITE

250

DIRECTIVE STATEMENT

SYNTAX: REM <chars>
(* <chars>[")]

REM needs one argument — a comment line.

REM is used to insert comments in your program. The character
“I’_ may be typed in place of REM when writing procedures. The
optional “(*”’ syntax is compatible with PASCAL programs.

See also: none

RENAME

SYSTEM MODE COMMAND
SYNTAX: RENAME <proc name >, <new proc name >

RENAME needs two arguments — the current procedure name
and the new procedure name.

RENAME changes the name of a procedure.

See also: none

251

REPEAT

RESTORE

SYNTAX: REPEAT

CONTROL STATEMENT

UNTIL <boolean expr>

REPEAT is part of the REPEAT ... UNTIL loop construct.

REPEAT needs one argument — a boolean expression.

REPEAT is used to execute statements inside a loop UNTIL the
BOOLEAN expression at the end of the loop becomes TRUE.

EXAMPLE:
PROCEDURE repeatdem

(* Demonstrate REPEAT ... UNTIL Control Structure *)

DIM count:INTEGER
count:=0

PRINT

REPEAT

PRINT count

count: =count+1
UNTIL count>10

PRINT

See also: none

INPUT/OUTPUT STATEMENT

SYNTAX: RESTORE [<line number>]

RESTORE does not return a value.

RESTORE needs one argument — a line number.

RESTORE tells BASIC09 which DATA statements are to be
READ next. If a line number is used, that line is READ next. If a
line number is not used, the first DATA statement is read.

252

EXAMPLE:

PROCEDURE restoredem

(* Show use of RESTORE statement *)
DIM count,numbers:INTEGER
DATA 10,20,30,40

DATA 50,60,70,80

10 DATA 90,100,110,120

DATA 130,140,150,160

(* PRINT first 16 data elements *)
PRINT

FOR count:=1 TO 16

READ numbers

PRINT numbers; "~ ';

NEXT count

PRINT \ PRINT

(* Now read and print last eight elements again *)
RESTORE 10

FOR count: =1 TO 8

READ numbers

PRINT numbers; " ';

NEXT count

PRINT \ PRINT

See also: DATA, READ

MATH FUNCTION
SYNTAX: RND (<num>)
RND returns a random REAL number.
RND needs one parameter — a REAL number.

RND may be used to generate random numbers for games or
simulations.

See also: none

253

RND

RUN

SAVE

SYSTEM MOBE COMMAND,
CONTROL STATEMENT

SYNTAX: RUN <proc name> [(<param> {,<param>})]
RUN <string var> [(<param> {,<param>})]

RUN executes the procedure named.

RUN can have several arguments. The first, a procedure name
or the name of a STRING variable which holds the procedure name.
The second, a list of the names of any variables, arrays or data stru-
ctures being passed as parameters.

RUN is used to execute a procedure from the terminal while in
the system mode or from within another procedure during program
execution.

EXAMPLES:

PROCEDURE rundem
(* Show use of RUN statement *)
DIM count:INTEGER

PRINT

FOR count:=1 TO 3
RUN printname
NEXT count

PRINT
END

PROCEDURE printname

(* Procedure to be exercised by rundem *)
PRINT "‘Dale L. Puckett”

END

See also: PACK

SYSTEM MODE COMMAND

SYNTAX: SAVE [<proc name> {,<prochame>)} [>
< pathlist >]]

SAVE* [<pathlist>]

SAVE writes or ‘‘saves’’ the named procedure — or all your
procedures — to a file or device.

SAVE has two arguments; your procedure’s name and a pathlist.
SAVE is used to ‘‘save’ or list your procedures.
See also: LIST

254

SEEK

INPUT/OUTPUT STATEMENT
SYNTAX: SEEK #<int expr>,<real expr>

SEEK sets the location of a pointer into your disk file. The pointer
tells the OS-9 operating system which character to get next if it is
READing or where to put the next character if it is writing.

SEEK needs two arguments. The first is an INTEGER
expression which represents a pathlist. The second is an expression
that evaluates as a real number and is the desired location in the file.

SEEK is used to gain random access to information in your files.
it is used with the GET and PUT statements.

EXAMPLE:

PROCEDURE seekdem

(* Show use of SEEK statement *)

DIM path:INTEGER

DIM filepointer:REAL

DIM char:STRING[1]

DIM wholething:STRING[36]

(* First, create a file *)

CREATE #path, 'demofile ":WRITE

PRINT #path,'0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
CLOSE #path

PRINT

PRINT ""Here’s the entire file we created.”’

OPEN #path,’ 'demofile ":READ

GET #path,wholething

PRINT

PRINT wholething

PRINT

PRINT “"Now let’s print some specific characters.”
PRINT

SEEK #path,10

GET #path,char

PRINT ‘‘Character Number 10: “’; char
SEEK #path,35

GET #path,char

PRINT ““Character Number 35: *‘; char
SEEK #path,0

GET #path,char

PRINT "“Character Number 0: ’; char
PRINT

CLOSE #path

SHELL "'del demofile”’

See also: GET, PUT

255

SGN

MATH FUNCTION
SYNTAX: SGN(<num>)

SGN returns a -1 if <num> is less than zero, 0 if it is equal
to zero and 1 if it is greater than zero.

SGN needs one parameter — a number or expression of any type.

SGN is used to tell if a number is positive, negative or equal to
zero.

EXAMPLE:

PROCEDURE sgndem
(* Demonstrate SGN function *)

DIM sign,number(10):INTEGER

DATA 10,-20,35,45,-56
DATA 0,53,0,-75,89

PRINT

FOR count: =1 TO 10
READ number(count)
NEXT count

PRINT
PRINT “COUNT",”"NUMBER","’'SIGN "’

FOR count:=1 TO 10
PRINT count,number(count),SGN(number(count))
NEXT count

PRINT

See also: none

256

CONTROL STATEMENT
SYNTAX: SHELL <str expr>
SHELL does not return a value.
SHELL needs one argument — a string expression that
represents a command line that will be sent to the OS-9 Operating

System.

SHELL is used within BASIC09 procedures to execute OS-9
utilities or programs.

EXAMPLE:

PROCEDURE shelldem
(* Show Shell Statement executing 0S-9 utilities *)

PRINT "'Here are the files in the current data directory.”’
SHELL ““dir”

PRINT

PRINT "“And, here are the files in the current execution directory.’’

PRINT
SHELL ““dir x”’

PRINT

PRINT ’‘Finally, here is the current date and time: "’;
SHELL “'date,t”

PRINT \ PRINT

See also: none

257

SHELL

SIN

MATH FUNCTION
SYNTAX: SIN(<num>)
SIN returns a real number which is the sine of <num>.
SIN needs one parameter — a REAL number. This number may
be expressed in either degrees or radians, depending on the setting

of the DEG/RAD toggle.

The SINe of an angle is the ratio of the length of the opposite
side of a right triangte to the length of the hypotenuse.

See also: DEG, RAD

SIZE

MISCELLANEOUS FUNCTION
SYNTAX: SIZE(<name>)

SIZE returns the storage size in bytes needed by any variable,
array or structure.

SIZE needs one parameter — the name of a variable, array or
structure.

SIZE is used with the SEEK statement to position your file pointer
when working with random access files.

EXAMPLE:

PROCEDURE sizedem
(* Show SIZE function *)

DIM example:STRING

DIM exampletwo:STRING[64]
DIM count:BYTE

DIM pointer:INTEGER

DIM number:REAL

PRINT

PRINT ""The SIZE function returns the size of any data element.”’
PRINT

PRINT “Example requires '’; SIZE(example); '’ bytes."”’

PRINT ""Exampletwo requires '’; SIZE(exampletwo); ' bytes."”’
PRINT "Count requires ‘’; SIZE(count); "’ bytes. "’

PRINT ’'Pointer requires '’; SIZE(pointer); "' bytes."”

PRINT ""And, number requires '’; SIZE(number); '’ bytes.””

PRINT

258

PRINT ““You’'ll use this function a lot to position the file’’
PRINT “’pointer in a random file."”’
PRINT

See also: SEEK

sQ

MATH FUNCTION
SYNTAX: SQ(<num>)
$Q returns the value of <num> squared.

S$Q needs one parameter, a REAL or INTEGER number or
expression.

SQ is used to test for square numbers.

See also: SQR, SQRT

SQRT

MATH FUNCTION
SYNTAX: SQRT(<num>)
SQRT returns the square root of a number or expression.

SQRT needs one parameter — a REAL or INTEGER number
or expression.

SQRT is used to find the square root of a number. It is the same
as SQR.

EXAMPLE:

PROCEDURE sqrtdem
(* Show SQRT function in action *)
DIM number,squareroot:REAL

PRINT
INPUT "Type a number: “,number

squareroot: = SQRT(number)

PRINT

PRINT ‘"The square root of ’; number;
PRINT " is '’; squareroot

PRINT

See also: SQ, SQR

259

SQR

STATE

MATH FUNCTION
SYNTAX: SQR(<num>)

SQR returns a REAL number — the square root of the number
you specify.

SQR needs one parameter — a REAL or INTEGER number or
expression.

SQR is used to find square roots of numbers.

EXAMPLE:

PROCEDURE sqrdem
(* Show SQR function in action *)
DIM number,squareroot:REAL

PRINT
INPUT "“Type a number: “,number

squareroot: = SQRT(number)

PRINT

PRINT "“The square root of ‘’; number;
PRINT " is "; squareroot

PRINT

See also: SQRT, SQR

DEBUG MODE COMMAND
SYNTAX: STATE

STATE returns the *“calling’’ order of all active procedures in
memory. It is used from the DEBUG mode.

STATE does not require any arguments.

STATE is used to find the nesting level of procedures during pro-
gram execution.

See also: BREAK, PAUSE

260

DEBUG MODE COMMAND

SYNTAX: STEP [<number>]
<CR>

STEP executes a suspended procedure a line at a time — or
<number > lines at a time. It is entered from the DEBUG mode.

STEP needs one argument; a number representing the number
of source lines you want to execute at a time. You may enter a car-
riage return to step through a procedure one line at a time.

STEP is used to watch the flow of a procedure during debugging.

See also: TRON, TROFF

CONTROL STATEMENT
SYNTAX: STOP [<output list>]

STOP haits your program and returns BASIC09 to the Command
Mode.

STOP has one optional argument — an output list that contains
a message that may be sent to your terminal.

STOP is used to debug procedures and control program flow.
EXAMPLE:

PROCEDURE stopdem
(* Show STOP statement *)

PRINT
PRINT "“The STOP statement causes your program to return”

PRINT “to BASIC09’s command mode. It can also send a message '’

PRINT ’"‘to the terminal.”

PRINT

STOP “You better give up! Type RUN to try again!”’
(* This line will never be executed *)

See also: END, ERROR

261

STEP

STOP

STR$

STRING FUNCTION
SYNTAX: STR$(<expr>)

STRS$ does not return a value. It converts a numeric expression
to a STRING.

STR$ needs one parameter — a REAL or INTEGER expression.

STRS$ is used to convert a number to a string. The STRING may
then be manipulated by STRING modifiers such as LEFT$ and
RIGHTS, etc.

EXAMPLE:

PROCEDURE strdem
(* Show STR$ function in action *)

DIM number:REAL
DIM numberhoider:STRING

PRINT
INPUT "“Type a number at least three digits long: "“,number

numberholder: = STR$(number)

PRINT

PRINT “Your number printed as a number: ’; ‘“ number
PRINT “Your number printed as a string: ’; numberholder
PRINT

PRINT "Now, we’ll prove it is a string and use the MID$ function’’
PRINT “‘to print the second digit of your number: "’;
PRINT MID$(numberholder,2,1)

PRINT

See also: LEFTS$, RIGHTS, MID$, ASC

SUBSTR

STRING FUNCTION
SYNTAX: SUBSTR(<str1>,<str2>)

SUBSTR returns the starting position of <str1> in <str2> or
zero if <str> is not found.

SUBSTR needs two parameters — a string to be found and a
string to be searched.

SUBSTR is used to find a series of characters within a longer
string.

262

EXAMPLES:

PROCEDURE substrdem

(* Demonstrate SUBSTR function *)
DIM example:STRING[50]

DIM pointer:INTEGER

example: = “"Now is the time for all good men to sing."”’

PRINT

PRINT ""Here is a string: ’; example

PRINT “Let’s find the position of the letter ‘s’ in ‘sing’.”’
PRINT

pointer: = SUBSTR(''sing ',example)

PRINT ""“The ‘s’ is the ‘‘; pointer; "the character.”
PRINT

See also: CHRS, LEFT$, MIDS$, RIGHTS

INPUT/OUTPUT STATEMENT

SYNTAX: PRINT [#<int expr>,] [USING <str expr>,]
< output list> TAB <expr>

TAB causes BASIC09’s PRINT statement to output the proper
number of spaces to place the cursor at the requested position on
a line.

TAB needs one parameter — an INTEGER expression that
evaluates to the number of spaces you need to PRINT.

TAB is used to format your output.

EXAMPLE:

PROCEDURE tabdem
(* Show TAB function in use *)

PRINT
PRINT ’"'Let’s print some numbers 12 columns apart.”
PRINT

FOR count:=0 TO 72 STEP 12
PRINT TAB(count); count;
NEXT count

PRINT
See also: PRINT, PRINT USING

263

TAB

TAN

TRIMS

MATH FUNCTION
SYNTAX: TAN (<num>)

TAN returns a REAL number that represents the TANgent of
the angle specified.

TAN needs one parameter — a REAL or INTEGER number ex-
pressed in either degrees or radians. If using degrees, you must toggle

the DEG/RAD switch with DEG. The reverse holds true if you are
using RADians.

TAN is used to find the length of an unknown side of a triangle
when you know one side and the angle.

EXAMPLE:

PROCEDURE tandem
(* Demonstrate the TAN function *)

DIM angle:REAL
DEG

PRINT
INPUT “Enter an angle expressed in degrees: ",angle

PRINT "“The tangent of a '’; angle; "' degree angle is “;
PRINT TAN(angle)
PRINT

See also: ATN, DEG, RAD

STRING FUNCTION
SYNTAX: TRIMS$(<str>)
TRIMS returns a STRING with all trailing spaces removed.
TRIMS$ needs one parameter — a STRING or STRING variable.
TRIMS is used to compact strings before storing them in files.

EXAMPLE:

PROCEDURE trimdem
(* Show TRIMS function in use *)

264

DIM answer:STRING[32]
DIM trimmedanswer:STRING[32]

PRINT
PRINT ""Type your name. Just for demonstration purposes add”’
INPUT "“a few spaces after your name: ‘,answer

trimmedanswer: = TRIM$(answer)

PRINT

PRINT "“You typed '’; LEN(answer); '* characters.”’

PRINT “There are “’; LEN(trimmedanswer); '’ characters in your name.
PRINT

"

See also: none

TROFF

DIRECTIVE STATEMENT,
DEBUG MODE COMMAND

SYNTAX: TROFF

TROFF does not return a value. It turns off BASIC09’s trace
mode.

TROFF does not require any arguments.

TROFF is used while debugging.

EXAMPLE:

PROCEDURE troffdem
(* Show how TROFF stops the trace of your program *)
DIM count:INTEGER

PRINT
PRINT ““Let’s turn the trace mode on and watch a program.”
PRINT

TRON

FOR count:=1TO 2
PRINT count
NEXT count

TROFF

PRINT
PRINT ""The trace mode is now off.”’
PRINT

See also: TRON

265

TRON

DIRECTIVE STATEMENT,
DEBUG MODE COMMAND

SYNTAX: TRON

TRON does not return a value. It turns BASIC09’s “‘trace”
feature on. After you type TRON, each statement of your procedure
is decompiled and printed during execution. The value of any variables
or expressions evaluated during execution is also printed.

TRON does not require any arguments.

TRON is used to debug your procedures.
EXAMPLE:

PROCEDURE trondem
(* Show how TRON traces your program *)
DIM count:INTEGER

PRINT

PRINT ‘“‘Let’s turn the trace mode on and watch a program.”
PRINT

TRON

FOR count: =1 TO 3
PRINT count
NEXT count

TROFF
See also: TROFF

TRUE

BOOLEAN FUNCTION
SYNTAX: TRUE

TRUE returns the BOOLEAN value TRUE, which is one of two
values that may be returned by a BOOLEAN expression.

TRUE does not require any parameters.

TRUE is the result of a BOOLEAN operation that makes a logical
comparison to test for a certain condition.

See also: BOOLEAN, FALSE

266

TYPE

DECLARATIVE STATEMENT

SYNTAX: TYPE <typename> :=
<type decl> {; <type decl>}
<type decl> :=
<field name > . <decl> [: type>]
<decl> :=
<name > [<subscript>]

<subscript> : =
(<const> [,<const>] ,<const>]])

<type> :=
BYTE | INTEGER | REAL | BOOLEAN |
STRING [<MAX LEN>] | <user defined>

<user defined> : =
user defined by TYPE statement

TYPE is used to define new BASIC09 data types.

TYPE may use any number of arguments. The complexity
depends upon the data type being defined.

TYPE is used to create user defined data structures. After a struc-
ture has been typed, storage is reserved with the DIM statement.

EXAMPLE:

PROCEDURE typedem
(* Show how to enter TYPE statement *)

TYPE labels = name:STRING[20]; address(2):STRING[24]; zip:REAL
DIM mailing__list(50):l1abels

PRINT

PRINT "Your mailing list will require *’; SIZE(mailing__list); " bytes.””
PRINT

See also: BOOLEAN, BYTE, DIM, INTEGER, REAL, STRING

267

PRINT USING

INPUT/OUTPUT STATEMENT
SYNTAX: PRINT [#<expr>]USING <str expr>, <outputlist>

PRINT USING does not return a value. It is an optional addi-
tion to the PRINT statement.

PRINT USING needs several parameters. The first is a string
expression that determines the format. The second is the output list
that you are printing. PRINT USING uses the following abbreviations.

R for real format

E for exponential format
I for integer format

H for hexadecimal format
S for string format and

B for Boolean format

PRINT USING lets you format your output so that it is easier to
read. There are three additional operators that may be used with
PRINT USING:

W for field width,
F for fraction field and
J for justification.

EXAMPLE:

PROCEDURE printusingdem
(* Show a few examples of PRINT USING *)

PRINT

PRINT “We’ll PRINT several examples here. All will use a”
PRINT “column width of 20 characters.”

PRINT

PRINT

PRINT ’‘First, we’ll PRINT a few REAL numbers.’’

PRINT

PRINT USING ""R20.2< "",1234.1234

PRINT USING "'R20.2> '",1234.1234

PRINT \ PRINT

PRINT "Now let’s PRINT a few numbers in exponential format."”
PRINT

PRINT USING “E20.2"",1234.1234

PRINT USING ""E20.2> "",1234.1234

PRINT \ PRINT

PRINT ‘‘Let’s switch to the INTEGER format.”’

268

PRINT

PRINT USING "120< "",1234

PRINT USING ‘120> "',1234

PRINT USING "1207",1234

PRINT \ PRINT

PRINT “Here are a few Hexadecimal numbers."”’
PRINT

PRINT USING "“H20> "“,1234

PRINT USING "H20< "",1234

PRINT USING "H201",1234

PRINT \ PRINT

PRINT “STRING variables may also be formatted."’
PRINT

PRINT USING "S20< "’,"’Hello Dale”

PRINT USING ""S20> “,"’Hello Dale”’

PRINT USING "S207"","’Hello Dale "’

PRINT N\ PRINT

PRINT “And finally, BOOLEAN values may also be sent.”’
PRINT

PRINT USING “B20< “,TRUE

PRINT USING "'B20> "",FALSE

PRINT USING '‘B207'',TRUE

PRINT

See also: PRINT, TAB

269

VAL

MISCELLANEOUS STATEMENT
SYNTAX: VAL(<str>)
VAL returns a real value.
VAL needs one parameter — a STRING variable.

VAL is used to convert a number written as a STRING to a
number of type REAL. It has the effect of stripping off the quotes
or dollar sign.

EXAMPLE:

PROCEDURE valdem

(* Show use of VAL function *)
DIM stringvalue(3):STRING[12]
DIM numericvalue(3):REAL
DIM count:INTEGER

stringvalue(1): = "* 985.34"
stringvalue(2): = "-5796.32"
stringvalue(3): = -1.2345"

FOR count:=1 TO 3
numericvalue(count): = VAL(stringvalue(count))
NEXT count

PRINT

FOR count:=1TO 3

PRINT numericvalue(count)

NEXT count

PRINT

PRINT "The STRING values have been successfully "
PRINT converted to numeric values and printed.’”’
PRINT

See also: LEN, SUBSTR

270

WHILE ... DO

CONTROL STATEMENT

SYNTAX: WHILE <bool expr> DO
ENDWHILE

WHILE is part of the WHILE ... DO ... ENDWHILE control
structure.

WHILE needs one parameter — a BOOLEAN expression.

WHILE is the starting point of the WHILE ... DO ... ENDWHILE
construct. A BOOLEAN expression is evaluated at the top of this loop.
If it evaluates as TRUE, the statements inside the loop are executed;
when it becomes FALSE, the statement following ENDWHILE is
executed.

EXAMPLE:

PROCEDURE whiledem
(* demonstrate use of WHILE ... DO construct. *)

DIM number:INTEGER

number: =0

WHILE number<5 DO

number: = number + 1

PRINT “This is loop #’’; number
ENDWHILE

PRINT ““All done!"”’
END

See also: DO, ENDWHILE

271

WRITE

INPUT/OUTPUT STATEMENT
SYNTAX: WRITE #<int expr>,<output>
WRITE transfers data to a file or device in ASCII format.

WRITE needs two parameters — The number of a data path and
the data to be written.

WRITE stores data in a file or sends it to your terminal or printer.
Before you can WRITE to a file or device you must CREATE or OPEN
a path.

EXAMPLE:

PROCEDURE writedem
(* Show use of WRITE statement *)

DIM words(4):STRING[18]
DIM count,numbers(4):INTEGER

DATA 111,112,112,114
DATA lIThisll,llisIl, llall’ Iltestlll
FOR count:=1 TO 4

READ numbers(count)
NEXT count

FOR count:=1 TO 4
READ words(count)
NEXT count

PRINT

PRINT “We’ll WRITE both words and numbers.”’
PRINT "“This time we are using a FOR ... NEXT loop.”
PRINT

FOR count:=1TO 4
WRITE #1,numbers(count)
NEXT count

PRINT

FOR count: =1 TO 4
WRITE #1,words(count)
NEXT count

PRINT

PRINT “Now we are WRITING them from an output list.”
PRINT

WRITE #1,words(1),words(2),words(3),words(4)

WRITE #1,numbers(1),numbers(2),numbers(3),numbers(4)

PRINT
PRINT "Notice how the ASCII zeros ($00) that the WRITE statement”’

PRINT “'sends out do not show up on your terminal.”
PRINT

272

PRINT “If you had sent the two output lists above to a disk file’

PRINT “you would be able to DUMP the file and see the zeros between’’
PRINT "“each item in the output list. A <RETURN > follows the end of”’
PRINT ““each output list.”’

PRINT

See also: CREATE, OPEN, UPDATE

BOOLEAN FUNCTION
SYNTAX: XOR
XOR returns a BOOLEAN value.
XOR does not require any parameters.

XOR is used in an IF ... THEN statement as an eXclusive OR
operator. For example:

IF firstnumber = 5 XOR secondnumber = 5 THEN 100

This statement reads, “If firstnumber is equal to 5 OR second
number is equal to 5, but not both of them, THEN go execute line
100.”

EXAMPLE:

PROCEDURE xordem

(* Show XOR operator in use *)
DIM number,numbertwo:INTEGER
DIM status:BOOLEAN

PRINT
INPUT "“"Type a number between one and 10: “,number

INPUT "“Thank you. Please type one more in the same range: ',numbertwo

(* ‘status’ becomes true if number=3 OR if numbertwo=8 *)

(* — except when number=3 AND numbertwo=8 *)

(* When both these conditions are TRUE the value of ‘status’ *)
(* becomes faise. *)

status: = number =3 XOR numbertwo=8

IF status THEN

PRINT

PRINT "“One condition or the other is TRUE. Congratulations.’’

ELSE

PRINT

PRINT “"Whoops! Neither of the conditions tested are TRUE."”

PRINT “Or, you somehow managed to guess both numbers correctly.’
ENDIF

PRINT
See also: AND, NOT, OR

4

273

XOR

274

PART V

color computer graphics

This is a special section for owners of TRS-80 Color Computers.
A Cotor Computer wouldn’t be a Color Computer without graphics,
so the Color Computer version of BASIC09 gives you an excellent selec-
tion of powerful graphics commands.

One preliminary note: the information of this chapter is based
on the features of the Color Computer 1 or Color Computer 2, BASIC09
Version RS 1.00.00, and OS-9 Level One Version RS 1.01.00, unless
otherwise noted.

THE COLOR COMPUTER DISPLAY

Before we dig into the nitty-gritty of the graphics commands them-
selves, we'll need to review how the Color Computer’s display system
works.

The Color Computer can display a screen of 512 alphanumeric
characters or a screen of graphics. The alphanumeric mode is what
you’ve been using all along to communicate with BASIC09 and OS-9.
The graphics mode is what many popular Color Computer entertain-
ment programs use to draw detailed pictures.

BASICO09 gives you a choice of two graphics screen formats. The
first is a grid of 24,576 individual points. The grid is organized into
128 columns across the screen and 192 rows up the screen. Each
point can be individually set to one of four colors. You can think of
this as “color TV mode.

275

The second graphics screen format is a grid of 49,152 points
organized into 256 columns and 192 rows. Each point can be turned
on or off only (i.e., this is a two color mode). This can be compared
to “black and white TV”. Comparing this format to the four color for-
mat, you are trading color for more picture detail.

These two graphics modes are the most powerful that are sup-
ported by the Color Computer hardware. They roughly correspond
to the limit of what a consumer model color TV can display using a
connection through its antenna terminals. The Color Computer hard-
ware can also produce less detailed screens but because these are
so rarely used OS-9 does not support them.

Unfortunately, mixing characters and graphics images on the
same screen is not taken care of by the hardware. It can be done by
software, but it’s not easy unless you are a fairly skilled programmer.
it can also take up a lot of memory. Therefore, BASIC09 gives you
commands that lets you switch back and forth between separate graph-
ics and text screens, but not both at the same time.

SCREEN COORDINATES AND THE GRAPHICS CURSOR

The rows and columns of points on the screen are a coordinate
system which is used by all graphics drawing commands. Coordinates
are a pair of numbers used to refer to particular points such as the
middle of a circle or the end point of a line. The rows and columns
are numbered from zero upward beginning at the lower left-hand corner
of the screen.

The column number is given first. This makes graphics coor-
dinates the same as the common mathematical “X/Y’’ coordinate
system. For example, the coordinate (12,3) refers to a point at the
intersection of the thirteenth column from the left and the fourth row
up from the bottom.

-
w

INRREE RN

_“ =
o = N

O = N W dH oo N W

0123456 7 891011121314

276

No, we're not trying to put you on! If this sounds wrong to you,
you have already forgotten that numbering begins at line zero, column
zero. Count the lines in the example below if you can’t see why this
causes “coordinate inflation”. Numbering things starting with the
“zeroth” item is another one of those little traps designed to keep you
on your toes.

Many of the graphics commands can use coordinates using the
current position of a graphics cursor. The graphics cursor is very
similar to the cursor used in the alphanumeric code. It indicates the
place where the next drawing command will start. it is moved auto-
matically by many commands, or can be moved to a particular point
using the MOVE command. One big difference compared to the alpha
mode cursor is that the graphics cursor is invisible. This keeps it from
becoming an unintended part of your pictures.

COLOR CODES AND SETS

Depending on the screen format you select, you can use at most
two or four different colors at a time. When you use a graphics draw-
ing command, you specify the color you want according to a color code
number.

The color code also has another important use. It controls which
one of the several available color sets will be used. This gives you
a wider selection of colors to choose from. The color codes and cor-
responding color sets are given in the table below.

256 By 192 128 by 192
Color Two Color Format Four Color Format
Code Background Foreground Background Foreground
00 Black Black Green Green
01 Black Green Green Yellow
Color 02 Green Blue
Set 1 03 Green Red
04 Black Black Buff Buff
Color 05 Black Buff Buff Cyan
Set2 06 Buff Magenta
07 Buff Orange
08 not used Black Black
Color 09 Black Dark Green
Set 3 10 Black Med. Green
11 Black Light Green
12 not used Black Black
Color 13 Black Blue
Set 4 14 Black Red
15 Black Buff

277

THE GFX MODULE

Notice that the two-color mode only has two color sets—
black/green and black/buff (“buff’’ is very close to white). The four
color gives you four choices. Color sets 1, 2, and 4 offer useful com-
binations of different colors. Colors set 3 is interesting because it is
monochrome (black/green) with different intensities, which offers shad-
ing and contouring possibilities.

Color set selection is automatic when you give any color code.
For example, if you are in four color mode and you draw a line using
color code 07, color set 2 is automatically selected. You can change
color sets as you wish. The only effect on the screen is that the colors
change to the corresponding colors of the new set. Continuing the
example, if you next draw a line using color set 4, the orange line
(color code 5) drawn previously will change to buff, which is the
coresponding color in set 4.

Note that the background color varies according to the color set
selected. The background color is also always one of the two or four
colors available. To erase something, you simply redraw it in the back-
ground color.

You can set the ““foreground color’’ to any color. The foreground
color is the default color the drawing modes will use if you don’t spe-
cifically state your choice in each command. This is especially con-
venient when you use a sequence of drawing commands that will use
the same color. It saves typing and program size.

Technically, BASIC09 does not have built-in graphics commands.
Most of the actual drawing is done by OS-9’s graphics driver mod-
ule. Because of this, the graphics functions can be used by any
programming language. Basic graphics commands are passed to
0S-9 via control character sequences. Overall, this is a very flexible
system but control character sequences are never a lot of fun to work
with.

The Color Computer version of BASIC09 comes with a special
module called ““GFX’”’ which makes graphics programming quite sim-
ple. It effectively adds a whole new set of commands to BASIC09
using the RUN statement.

BASICO9 | GFX | Gggﬁ?cs
Program Graphics Module | i irof Driver
Commands Chars.

278

GFX can be thought of as a “black box” which takes high-level
graphics commands and translates them to the corresponding con-
trol character sequences. GFX is so automatic you don’t even need
to know anything about what the control characters are or how they
work. The illustration below shows the internal flow of graphics com-
mands from your program to OS-9 through GFX.

The file containing the GFX module should be kept in your com-
mands directory. It will be automatically loaded whenever you use it.
You can also manually pre-load it into memory using the following
0S-9 command line:

load gfx

Running a GFX graphics command is quite simple. The RUN
statement is used. The name of the command is passed as param-
eters, followed by additional parameters as necessary. Here are some
examples:

RUN gfx(“clear”)
RUN gfx(“line”,20,20,2)
RUN gfx(“color”,7)

Unless otherwise noted, the coordinate and color parameters are
always of type INTEGER.

A SUMMARY OF GFX FUNCTIONS

HOUSEKEEPING FUNCTIONS

ALPHA - switches back to the alphanumeric screen
COLOR - sets the current drawing foreground color

MODE -~ selects a graphic screen and a screen format
MOVE - changes the current position of the graphics cursor
QUIT - exits the graphics mode, giving back screen memory

DRAWING FUNCTIONS

CIRCLE - draws a circle

CLEAR - erases or presets the entire screen
LINE - draws a line

POINT -~ sets the color of a specific point

STATUS CHECKING FUNCTIONS

GLOC - returns the current position of the graphics cursor

GCOLR - returns the color of the point under the graphics
cursor

JOYSTK - returns the current position of the joystick(s) or
mouse

279

ENTERING THE GRAPHICS MODE

The MODE command switches the screen from the normal
alphanumeric mode to either of the two graphics modes. You must
state the screen format and initial foreground color you desire. MODE
also clears the screen the first time it is used. The format of the MODE
command is:

RUN gfx(“mode”,format,color)

The ‘format” code must be 0 for two color mode or 1 for four color
mode. The “‘color’” code selects the initial foreground color. Remem-
ber that this also selects the associated color set. You must execute
a MODE command before you can execute other graphics commands.

The first time the MODE command is used it will ask OS-9 for
a 6K byte memory space for screen display memory. If there isn’t 6K
of free memory available in one chunk, you’ll get a “memory full”’ error.

This will also cause GFX to be automatically loaded if you didn’t
preload it some time before. GFX will also need a bit of memory to
load in (about 2K). Therefore, it can also cause a memory full error.

Memory full errors usually happen when you gobble up almost
all of the system’s free memory when you start up BASIC09. The cure
is to exit BASICOQ9, and reenter it, this time asking for about 7K or 8K
less workspace memory.

Another related point is that GFX will keep the 6K of screen
memory until you use the QUIT command to permanently exit the
graphics mode.

THE HOUSEKEEPING COMMANDS

These commands generally control the graphics environment.

The ALPHA command temporarily switches the screen back to
the alphanumeric mode. The graphics and alphanumeric modes each
have a separate display memory area. This lets you switch back and
forth without affecting what is displayed on either screen. A subse-
quent MODE command will switch back to the graphics screen. The
ALPHA command never has parameters, just:

RUN gfx(“alpha”)

The COLOR command lets you change the current foreground
color at any time. Remember that your choice of color code also selects
the current color set. For example, to set the foreground color to
magenta (color set 2 in four color mode) you would use:

RUN gfx(“color”,6)

280

The MOVE command lets you change the location of the invisi-
ble graphics cursor. You must give the desired coordinates, for
example:

RUN gfx(“move”,63,127)

The QUIT command is used when you are completely done using
the graphics modes, because it gives back the 6K of display memory.
It's a good idea to always do this at the end of your program or you
may ‘‘lose” 6K of useful memory. This command is extremely simple:

RUN gfx(“quit”)

THE DRAWING COMMANDS

This is the fun part. These commands create pictures.

Most of the drawing commands share three conveniences fea-
tures. First, the color code (always the last parameter) is optional. If
you don’t give one, the current foreground color will be used. Second,
if the command requires one or two coordinates, the first set is optional.
If you omit one coordinate, the current graphics cursor location will
be used in its place. And finally, many of the commands automati-
cally update the cursor position.

The function of CLEAR is simple: it clears the screen. It also
resets the graphics cursor location to 0,0. It has another use: if you
specify a color it will preset the entire screen to that color. Here are
some examples:

RUN gfx(“clear”)
RUN gfx(“clear”,1)

POINT sets the color of a single point on the display to a speci-
fied color. It also sets the graphics cursor to that point. Remember
that if you omit the color code, the current foreground color will be used.

RUN gfx(“point”, NewX, NewY)
RUN gfx(“point”,50,99,5)

LINE draws straight lines in any direction. You can give the LINE
command two coordinates for the end points of the line. Alternatively,
you can give just one coordinate. In this case the position of the graph-
ics cursor is used at the starting point, and the coordinate you give
is used as the end point. The graphics cursor position is always moved
to the end point of the line. This lets you easily draw a series of con-
nected lines by just giving the end point of each line.

Like the other drawing commands, you can either give a specific
color code, or the current foreground color will be used automatically.

281

The next example draws a border around the screen, taking
advantage of the foreground color and graphics cursor features to keep
the commands as brief as possible.

RUN gfx (“mode”1,2)
RUN gfx(“color”,4)

RUN gfx(“line”,0,0,0,191)
RUN gfx(“line”,255,191)
RUN gfx(“line’,255,0)
RUN gfx(“line”,0,0)

Another useful command is CIRCLE. This command needs to
know where you want the center of the circle and the desired radius.
If you don’t give coordinates for the center point, the current position
of the graphics cursor will be used. You must always give the radius.
The color code, once again, is optional. Here’s an example that draws
a circle centered in the middle of a 4-color mode screen, with a radius
of 64 and a color code of 7:

RUN gfx(“circle”,128,96,64,7)
If you let the system use the current foreground color and the cur-
rent graphics pointer position, you get the simplest form of the com-

mand where only the radius is given:

RUN gfx(“circle”’,64)

Circles may not look perfectly round to you. If so, don’t run out
to get your eyes checked or your computer fixed. Circles may ook
slightly oval-shaped because GFX draws them to be mathematically
correct with respect to the point grid. The catch here is that the grid
isn’t perfectly square because your TV screen isn’t! This causes things
to have a slight vertical stretch. You may have also noticed this in cer-
tain film broadcasts.

Round but mathematically incorrect circles might look a little better
but they would drive you crazy trying to make them connect to other
things.

282

GFX has three commands that return useful information.

JOYSTK lets you read the current status of either of the joystick
ports. There must be exactly four parameters.

The first is an INTEGER in which you give a code number to select
the right (0) or left (1) port. If you are using both ports you have to
read them individually.

The second is a BYTE, INTEGER, or BOOLEAN (your choice)
value which is used to return the status of the fire button. A non-zero
(or BOOLEAN TRUE) returned value indicates that the button is being
pressed.

The third and fourth values may be of type INTEGER or BYTE
and are used to return the current X, Y position of the joystick or mouse.

The value returned will range from 0 to 63. Here is an example:

DIM JoySelect,JoyFire,JoyX,JoyY:INTEGER
JoySelect := 0
RUN gfx(“joystk”,JoySelect,JoyFire,JoyX,JoyY)

If you want to convert raw joystick readings to a full-sized screen
coordinate, you must multipty by the factors given in the table below.

mode X Y

2 color 4 3
4 color 2 3

GCOLR is used to read the color code of a specific point on the
screen. You can specify the coordinates of the point, or let the sys-
tem automatically use the current graphics cursor position. You must
provide a INTEGER or BYTE type variable to hold the returned color
code value. For example:

DIM WhatsUnder:BYTE
RUN gfx(“gcolr”’,25,40,WhatsUnder)

The last status command, GLOC, is intended for graphics wiz-
ards. It returns the physical address of the video display RAM. This
can be used with PEEK and POKE statements to directly diddle bits
in the display RAM. POKE is especially dangerous if you don’t know
exactly what you’re doing, so we’ll leave this one alone.

283

STATUS COMMANDS

WHERE’S THE PAINT COMMAND?

PAINT is a very handy command. It fills in an enclosed area of
any shape with your choice of color.

The catch is that GFX does not have a built-in PAINT command,
but you’re OS-9 system might. If you have version OS-9 version RS
02.00.00 or later, there is a paint function in the graphics driver. However,
because GFX was designed before the time 02.00.00 was released
it has no PAINT command.

But don’t panic—if you do have the most current version of OS-9,
using the PAINT command using a control code is very simple. Just
do this:

PRINT chr$(29);

This will fill the area enclosing the current graphics cursor posi-
tion with whatever the current foreground color is. The painting stops
whenever it hits a point that is a different color than the original color
of the point under the cursor.

Here is an example of how to draw a circle and fill it.

RUN gfx(“clear”)

RUN gfx(“move”,128,96)
RUN gfx(“color”,1)

RUN gfx(“circle”,64)
PRINT chr$(29);

graphics cursor

284

Index To Sections | and i

Arrays, 67,71,73

ASCII character set, 81
Assembly language routines, 143
Assignment statements, 78
Atomic data types, 56

Backspace, 8

BASE, 69,73

Binary numbers, 57
BOOLEAN, 56,65,83
Boolean values, 65,81,98
BREAK, 50, 95

BYE, 34

BYTE, 56,58

CHAIN, 18

Changing directories, 37
CHD, 37

CHX, 37

CLOSE, 115

Compilers, 5

Complex data types, 70,75
CONT, 53

Control keys, 7,8,46,109
Control statements, 79
Correcting errors, 8,30
CREATE, 17,18,112

DATA, 106

Data types, 55,56,83
Debug Mode, 45,102
DEG, 50

Degrees, 50
DELETE, 116
Deleting lines, 29
Device names, 14
DIM, 58,61,62,64,66,69,72
DIR, 35,36
Directories, 13,35,37

Edit mode, 2,21,38
Edit pointer, 23,26
ENDIF, 96
ENDLOOP, 89

ERR, 102

ERROR, 103

Error handling, 46,102

Escape key, 9

EXEC file access mode, 18,112
EXITIF, 89

Expressions, 82

FALSE, 66

Files, 13,38,107,111

File access modes, 18,109,112,
113

File names, 14

File security, 17

FOR/NEXT, 93

Functions, 79

GET, 111,117
GOSUB, 98
GOTO, 87,101

Hexadecimal numbers, 61,126

/0 paths, 13,89,107,111
I/O redirection, 13,15,16,36
IF, 96

INPUT, 108

Inserting lines, 27
INTEGER, 56,59

Integer numbers, 59
Interpreters, 5

KILL, 43

Languages, 5

LET, 51,78

Line numbers, 24

LIST, 39

Listing lines, 26

Listing programs, 28,47
LOAD, 39

LOOP, 88

Lower case letters, 10,14

285

Machine stacks, 143

MEM, 35

Memory units, 16,34
Memory usage, 15,16,34,74
Multiple statement lines, 78
Multitasking, 16

ON ERROR GOTO, 46,102
ON GOSUB, 99

ON GOTO, 101

OPEN, 112

Operator precedence, 82
Operators, 80

0OS-9 functions, 7,11,12,15

PACK, 42

PARAM, 138

Parameter passing, 71,133,136,
137,144

Pathlists (also see Files), 13,14

PAUSE, 46

POS, 124

PRINT, 51,109

Print formating, 110,123,125

PRINT USING, 124

PROCEDURE, 134

Procedures, 22,34,71,78,132

PUT, 111,117

RAD, 50

Radians, 50

Random files, 111,117,118
READ, 69,114,106

READ file access mode, 18,112
REAL, 56,62,63

Real numbers, 61

Record Structures, 71,74,119
Records, 118

Recursion, 139

Relational operators, 81
RENAME, 40

286

Renumbering lines, 24
REPEAT, 92

Repeat key, 8
RESTORE, 106

RUN, 40,41,93,132,145

SAVE, 38

SEEK, 111,120
Sequential files, 111
SHELL, 19,36,107
Shell (0S-9), 12,36
SIZE, 111,120

Source programs, 5,78
Special keys, 7
STATE, 50
Statements, 77

STEP, 49

STRING, 56,63

String searching, 29
Strings, 63,64
Structure assignments, 74
Subroutines, 98

TAB, 123

Timesharing, 16

Trace mode, 48

TROFF, 49

TRON, 48,49

TRUE, 66,83

TYPE, 71,74,119

Type ahead, 9

Type conversion, 67,75,83

UPDATE file access mode, 112
Upper case letters, 10,14

WHILE, 94

Workspace, 33

WRITE, 113

WRITE file access mode, 18,112

BASIC09 TOUR GUIDE

notes

287

——uctoyjore—

MICROWARE SYSTEMS CORPORATION

1866 NW 114th Street
Des Moines, lowa 50322

ISBN 0-918035-00-7

	Cover
	The Official Basic09 Tour Guide
	Table of Contents
	Introduction
	Using This Book
	Chapter Descriptions
	How This Book was Created
	Acknowledgements

	Part I. The Mechanics
	Chapter 1. The System If You Can't Wait
	Part One

	Chapter 2. Where Do I Start?
	How Languages Work: Compilers and Interpreters
	Interactivity
	Special Keys
	The Repeat Key
	Other Special Keys
	Other Basic09 Magic
	Up or Down?
	Summary

	Chapter 3. Touring Microware's OS-9 Operating System
	Meet the OS-9 Shell
	All About Pathlists and Device Names
	More Advanced Features
	Logging on a Timesharing Terminal
	You Can Feel Secure
	Chaining OS-9 Commands to Basic09
	Using Basic09's SHell Statement
	Os-9 System Commands
	Summary

	Chapter 4. Basic09's Editor
	Getting Your Program Inot the Computer
	The Editor
	It's All in A
	ABout Those Line Numbers
	Renumbering Your Lines
	Moving Through Your Program
	Inserting A Line
	Listing Your Program
	Deleting A Line
	In Search of a Lost String
	Changing Your Mind - Or, Fixing an Error
	Summary

	Chapter 5. How to Run Your Programs
	Managing Your Programs - The System Executive
	The Basic09 Workspace
	Getting More Memory
	Checking and Changing Directories
	The All Mighty $
	Changing Your Directories
	To "E" or To "EDIT"
	Saving Your Pride and Joy
	Loading Your Files
	Rename Your Procedures
	Running Your Program
	Take This Procedure and Pack It!
	Killing A Procedure
	Summary

	Chapter 6. Debugging Your Programs
	What if I make a Mistake: An Ode to Debug
	Debugging Starts Automatically
	Forcing Basic09 to Enter Debug
	Remember the $
	I Quit: or, How to End a Debugging Session Gracefully
	Trace On and Trace Off
	Taking Bigger Steps
	Setting Breakpoints in Your Program
	Degrees and Radians
	Finding the State of Your Program
	Let Me Change Your Value
	Printing the Current Value of a Variable
	Summary

	Part II. The Language
	Chapter 7. TYPE Variables
	It Pays to Type Your Data
	Data Type Definition
	Byte On
	Integer Variables are Worth More
	Real Numbers
	Strings Hold A Number of Characters
	Booleans - They're Either True of False
	Automatic Type Conversion
	Arrays Can Hold a Lot of Data
	Complex Data Types
	Summary

	Chapter 8. Expressing Yourself Clearly
	Statements - They Define an Action
	Assignment Statements
	Control Statements
	Functions Perform Many Jobs
	Operators - They're All Active Verbs
	Operator Precedence
	Expressions - They Have a Value
	Automatic Type Conversion
	Summary

	Chapter 9. Control Structures Ley You Go With the Flow
	LOOP ... ENDLOOP - It Could Go On Forever!
	EXITIF - A Way to Escape From a Loop
	Control of Program Flow
	REPEAT ... Until you Get Tired
	Let's Loop for Awhile Next Week
	While You're Still Learning, Let's Do It Again
	If You Can Think, Then Make a Decision
	GOSUB Calls a Basic09 Routine
	GOTO: Use it Sparingly
	ON ERROR GOTO Lets You Exit Gracefully
	Summary

	Chapter 10. Talking to teh Outside World
	Reading and Storing Internal Data
	All About Paths and Files
	Inputting Data From Your Terminal
	Printing Data on Your Terminal or Printer
	Two Types of Files - Random and Sequential
	Let's Create a File
	Let's Open a File
	Let's Write to Our File
	Reading Our Records
	Don't Forget to Close Your File
	To Get Rid of a File - Delete It
	When You Put Data in a File, You Can Get It Faster
	Summary

	Chapter 11. Who Says Form Follows Function
	You Can Tab to any Position
	POS Will Tell You Where You Are
	Print Using Gives You Complete Control
	Summary

	Chapter 12. Letting Basic09 Run Its Own Programs
	Modularity
	The RUN Statement: A Programmer's Marathon
	Pass the Word - Use a Parameter
	The Hard Way
	The Easy Way
	The Automatic Way
	Recursion
	Summary

	Chapter 13. Using Machine Language Routines
	Stacks
	Let's Add It All Up
	Summary

	Chapter 14. Example Programs
	Sample Program One - Finances
	Sample Program Two - BlackJack Game

	Part III. OS-9 Commands Explained
	A-B-C
	ATTR
	BACKUP
	BUILD
	CHD
	COBBLER
	COPY

	D-E-F
	DATE
	DCHECK
	DEL
	DIR
	DISPLAY
	DSAVE
	DUMP
	ECHO
	EX
	FORMAT
	FREE

	I-K-L
	IDENT
	KILL
	LINK
	LIST
	LOAD
	LOGIN

	M-O-P
	MAKDIR
	MDIR
	MERGE
	MFREE
	OS9GEN
	PRINTERR
	PROCS

	R-S-T
	RENAME
	SAVE
	SETIME
	SLEEP
	SETPR
	SHELL
	TEE
	TMODE
	TSMON

	U-V
	UNLINK
	VERIFY

	Part IV. Basic09 Keywords Explained
	A-B-C
	ABS
	ACS
	ADDR
	AND
	ASC
	ASN
	ATN
	BASE
	BOOLEAN
	BREAK
	BYE
	BYTE
	CHAIN
	CHD
	CHR
	CHX
	CLOSE
	CONT
	COS
	CREATE

	D-E-F
	DATA
	DATE$
	DEG
	DELETE
	DIM
	DIR
	END
	EOF
	ERROR
	ERR
	EXITIF ... ENDEXIT
	EXP
	FALSE
	FIX
	FLOAT
	FOR .. TO [STEP] NEXT

	G-I-K
	GET
	GOSUB ... RETURN
	GOTO
	IF ... THEN ... ELSE ... ENDIF
	INPUT
	INT
	INTEGER
	KILL - CONTROL STATEMENT
	KILL - SYSTEM MODE COMMAND

	L-M-N
	LAND
	LEFT$
	LEN
	LET
	LIST
	LNOT
	LOAD
	LOG
	LOG10
	LOOP ... ENDLOOP
	LOR
	LXOR
	MEM
	MID$
	MOD
	NOT

	O-P-R
	ON ERROR GOTO
	ON GOSUB
	ON GOTO
	OPEN
	OR
	PACK
	PARAM
	PAUSE
	PEEK
	PI
	POKE
	POS
	PRINT
	PRINT USING
	PUT
	RAD
	READ
	REM
	RENAME
	REPEAT
	RESTORE
	RND
	RUN

	S-T-V
	SAVE
	SEEK
	SGN
	SHELL
	SIN
	SIZE
	SQ
	SQRT
	SQR
	STATE
	STEP
	STOP
	STR$
	SUBSTR
	TAB
	TAN
	TRIM$
	TROFF
	TRON
	TRUE
	TYPE
	VAL

	W-X
	WHILE ... DO
	WRITE
	XOR

	Part V. Color Computer Graphics
	The Color Computer Display
	Screen Coordinates and the Graphics Cursor
	Color Codes and Sets
	The GFX Module
	A Summary of GFX Functions
	Entering the Graphics Mode
	The Housekeeping Commands
	The Drawing Commands
	Status Commands
	Where's the Paint Command?

	Index to Sections I and II
	Notes
	Back Cover

